从对称矩阵中枚举极大双列的一种新算法

M. D. Savio, A. Sankar, R. V. Nataraj
{"title":"从对称矩阵中枚举极大双列的一种新算法","authors":"M. D. Savio, A. Sankar, R. V. Nataraj","doi":"10.1109/EAIT.2012.6407897","DOIUrl":null,"url":null,"abstract":"We address the problem of enumerating maximal bicliques from a symmetric matrix. We propose a novel algorithm named TWINBLADE which exploits the properties of symmetric matrix, and reduces the search space to a larger extent and it generates not even a single duplicate. Our algorithm is compared with LCM-MBC algorithm, in the experiment conducted, ours take almost only half the running time of LCM-MBC for sparse and comparatively performs better for dense datasets.","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel algorithm for enumerating maximal bicliques from a symmetric matrix\",\"authors\":\"M. D. Savio, A. Sankar, R. V. Nataraj\",\"doi\":\"10.1109/EAIT.2012.6407897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of enumerating maximal bicliques from a symmetric matrix. We propose a novel algorithm named TWINBLADE which exploits the properties of symmetric matrix, and reduces the search space to a larger extent and it generates not even a single duplicate. Our algorithm is compared with LCM-MBC algorithm, in the experiment conducted, ours take almost only half the running time of LCM-MBC for sparse and comparatively performs better for dense datasets.\",\"PeriodicalId\":194103,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIT.2012.6407897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们讨论了从对称矩阵中枚举极大双列的问题。我们提出了一种新的算法TWINBLADE,它利用对称矩阵的特性,在很大程度上减少了搜索空间,并且不产生一个重复。将我们的算法与LCM-MBC算法进行了比较,在实验中,我们的算法对于稀疏数据集的运行时间几乎只有LCM-MBC算法的一半,对于密集数据集的运行时间相对更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel algorithm for enumerating maximal bicliques from a symmetric matrix
We address the problem of enumerating maximal bicliques from a symmetric matrix. We propose a novel algorithm named TWINBLADE which exploits the properties of symmetric matrix, and reduces the search space to a larger extent and it generates not even a single duplicate. Our algorithm is compared with LCM-MBC algorithm, in the experiment conducted, ours take almost only half the running time of LCM-MBC for sparse and comparatively performs better for dense datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信