很多关于攻击深层特征的内容

Andras Rozsa, Manuel Günther, T. Boult
{"title":"很多关于攻击深层特征的内容","authors":"Andras Rozsa, Manuel Günther, T. Boult","doi":"10.1109/BTAS.2017.8272695","DOIUrl":null,"url":null,"abstract":"Deep neural networks provide state-of-the-art performance on various tasks and are, therefore, widely used in real world applications. DNNs are becoming frequently utilized in biometrics for extracting deep features, which can be used in recognition systems for enrolling and recognizing new individuals. It was revealed that deep neural networks suffer from a fundamental problem, namely, they can unexpectedly misclassify examples formed by slightly perturbing correctly recognized inputs. Various approaches have been developed for generating these so-called adversarial examples, but they aim at attacking end-to-end networks. For biometrics, it is natural to ask whether systems using deep features are immune to or, at least, more resilient to attacks than end-to-end networks. In this paper, we introduce a general technique called the layerwise origin-target synthesis (LOTS) that can be efficiently used to form adversarial examples that mimic the deep features of the target. We analyze and compare the adversarial robustness of the end-to-end VGG Face network with systems that use Euclidean or cosine distance between gallery templates and extracted deep features. We demonstrate that iterative LOTS is very effective and show that systems utilizing deep features are easier to attack than the end-to-end network.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"LOTS about attacking deep features\",\"authors\":\"Andras Rozsa, Manuel Günther, T. Boult\",\"doi\":\"10.1109/BTAS.2017.8272695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks provide state-of-the-art performance on various tasks and are, therefore, widely used in real world applications. DNNs are becoming frequently utilized in biometrics for extracting deep features, which can be used in recognition systems for enrolling and recognizing new individuals. It was revealed that deep neural networks suffer from a fundamental problem, namely, they can unexpectedly misclassify examples formed by slightly perturbing correctly recognized inputs. Various approaches have been developed for generating these so-called adversarial examples, but they aim at attacking end-to-end networks. For biometrics, it is natural to ask whether systems using deep features are immune to or, at least, more resilient to attacks than end-to-end networks. In this paper, we introduce a general technique called the layerwise origin-target synthesis (LOTS) that can be efficiently used to form adversarial examples that mimic the deep features of the target. We analyze and compare the adversarial robustness of the end-to-end VGG Face network with systems that use Euclidean or cosine distance between gallery templates and extracted deep features. We demonstrate that iterative LOTS is very effective and show that systems utilizing deep features are easier to attack than the end-to-end network.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

深度神经网络在各种任务上提供最先进的性能,因此在现实世界的应用中得到广泛应用。深度神经网络在生物识别中被广泛用于提取深层特征,这些特征可以用于识别系统中招募和识别新个体。研究表明,深度神经网络存在一个基本问题,即对正确识别的输入进行轻微干扰就会产生意想不到的错误分类。已经开发了各种方法来生成这些所谓的对抗性示例,但它们的目标是攻击端到端网络。对于生物识别技术,人们很自然地会问,使用深度特征的系统是否比端到端网络更能抵御攻击,或者至少更能抵御攻击。在本文中,我们介绍了一种称为分层原点-目标合成(LOTS)的通用技术,该技术可以有效地用于形成模拟目标深层特征的对抗性示例。我们分析并比较了端到端VGG Face网络与使用欧几里得或余弦距离的库模板和提取深度特征的系统的对抗鲁棒性。我们证明了迭代lot是非常有效的,并且表明利用深度特征的系统比端到端网络更容易被攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOTS about attacking deep features
Deep neural networks provide state-of-the-art performance on various tasks and are, therefore, widely used in real world applications. DNNs are becoming frequently utilized in biometrics for extracting deep features, which can be used in recognition systems for enrolling and recognizing new individuals. It was revealed that deep neural networks suffer from a fundamental problem, namely, they can unexpectedly misclassify examples formed by slightly perturbing correctly recognized inputs. Various approaches have been developed for generating these so-called adversarial examples, but they aim at attacking end-to-end networks. For biometrics, it is natural to ask whether systems using deep features are immune to or, at least, more resilient to attacks than end-to-end networks. In this paper, we introduce a general technique called the layerwise origin-target synthesis (LOTS) that can be efficiently used to form adversarial examples that mimic the deep features of the target. We analyze and compare the adversarial robustness of the end-to-end VGG Face network with systems that use Euclidean or cosine distance between gallery templates and extracted deep features. We demonstrate that iterative LOTS is very effective and show that systems utilizing deep features are easier to attack than the end-to-end network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信