{"title":"晶圆晶片(CiW) -制程设计套件及在硅中间层中使用GaN晶片的高频电路演示","authors":"F. Herrault, J. Wong, I. Ramos, H. Tai, M. King","doi":"10.1109/ECTC32696.2021.00039","DOIUrl":null,"url":null,"abstract":"The Metal Embedded Chiplet Assembly for Microwave Integrated Circuits (MECAMIC) technology utilizes RF GaN transistor chiplets integrated into passive interposer wafers using a metal electroplating embedding approach. Chiplets in Wafers (CiW) enable high level of integration between the transistor chiplets and the packaging circuitry, resulting in high RF performance. In this paper, we present the detailed process flow, the development of a MECAMIC Process Design Kit (PDK) for mm-wave RF Integrated Circuits (ICs), and its application to the design, simulation, fabrication and measurements of heterogeneously-integrated multi-stage W-band Low Noise Amplifiers (LNAs) using state-of-the-art mm-wave GaN transistor chiplets and low-cost silicon interposer packaging with 16 dB gain and 4dB noise figure at 77 GHz.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chiplets in Wafers (CiW) - Process Design Kit and Demonstration of High-Frequency Circuits with GaN Chiplets in Silicon Interposers\",\"authors\":\"F. Herrault, J. Wong, I. Ramos, H. Tai, M. King\",\"doi\":\"10.1109/ECTC32696.2021.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Metal Embedded Chiplet Assembly for Microwave Integrated Circuits (MECAMIC) technology utilizes RF GaN transistor chiplets integrated into passive interposer wafers using a metal electroplating embedding approach. Chiplets in Wafers (CiW) enable high level of integration between the transistor chiplets and the packaging circuitry, resulting in high RF performance. In this paper, we present the detailed process flow, the development of a MECAMIC Process Design Kit (PDK) for mm-wave RF Integrated Circuits (ICs), and its application to the design, simulation, fabrication and measurements of heterogeneously-integrated multi-stage W-band Low Noise Amplifiers (LNAs) using state-of-the-art mm-wave GaN transistor chiplets and low-cost silicon interposer packaging with 16 dB gain and 4dB noise figure at 77 GHz.\",\"PeriodicalId\":351817,\"journal\":{\"name\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC32696.2021.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chiplets in Wafers (CiW) - Process Design Kit and Demonstration of High-Frequency Circuits with GaN Chiplets in Silicon Interposers
The Metal Embedded Chiplet Assembly for Microwave Integrated Circuits (MECAMIC) technology utilizes RF GaN transistor chiplets integrated into passive interposer wafers using a metal electroplating embedding approach. Chiplets in Wafers (CiW) enable high level of integration between the transistor chiplets and the packaging circuitry, resulting in high RF performance. In this paper, we present the detailed process flow, the development of a MECAMIC Process Design Kit (PDK) for mm-wave RF Integrated Circuits (ICs), and its application to the design, simulation, fabrication and measurements of heterogeneously-integrated multi-stage W-band Low Noise Amplifiers (LNAs) using state-of-the-art mm-wave GaN transistor chiplets and low-cost silicon interposer packaging with 16 dB gain and 4dB noise figure at 77 GHz.