{"title":"近一致约束具有有界路径宽度对偶性","authors":"L. Barto, M. Kozik, R. Willard","doi":"10.1109/LICS.2012.24","DOIUrl":null,"url":null,"abstract":"We show that if a finite relational structure has a near unanimity polymorphism, then the constraint satisfaction problem with that structure as its fixed template has bounded pathwidth duality, putting the problem in nondeterministic logspace. This generalizes the analogous result of Dalmau and Krokhin for majority polymorphisms and lends further support to a conjecture suggested by Larose and Tesson.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Near Unanimity Constraints Have Bounded Pathwidth Duality\",\"authors\":\"L. Barto, M. Kozik, R. Willard\",\"doi\":\"10.1109/LICS.2012.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if a finite relational structure has a near unanimity polymorphism, then the constraint satisfaction problem with that structure as its fixed template has bounded pathwidth duality, putting the problem in nondeterministic logspace. This generalizes the analogous result of Dalmau and Krokhin for majority polymorphisms and lends further support to a conjecture suggested by Larose and Tesson.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near Unanimity Constraints Have Bounded Pathwidth Duality
We show that if a finite relational structure has a near unanimity polymorphism, then the constraint satisfaction problem with that structure as its fixed template has bounded pathwidth duality, putting the problem in nondeterministic logspace. This generalizes the analogous result of Dalmau and Krokhin for majority polymorphisms and lends further support to a conjecture suggested by Larose and Tesson.