k均值聚类在热红外图像热点检测中的应用

Mohd Rizman Sultan Mohd, S. H. Herman, Z. Sharif
{"title":"k均值聚类在热红外图像热点检测中的应用","authors":"Mohd Rizman Sultan Mohd, S. H. Herman, Z. Sharif","doi":"10.1109/ISCAIE.2017.8074959","DOIUrl":null,"url":null,"abstract":"K-Means Clustering is one of the method for image segmentation which will subtract the interest area from background. By using K-Means Clustering, thermal image is divided into 2 layers which separates the hotter region from the background image. This will ease the hot spot detection on thermal infrared images. This paper presents work on the implementation of K-Means Clustering onto thermal images. The algorithm for thermal infrared image segmentation using K-Means Clustering was developed and executed using MATLAB R2015a software. It was proven that K-Means Clustering ease the hot spot detection from the thermal images.","PeriodicalId":298950,"journal":{"name":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Application of K-Means clustering in hot spot detection for thermal infrared images\",\"authors\":\"Mohd Rizman Sultan Mohd, S. H. Herman, Z. Sharif\",\"doi\":\"10.1109/ISCAIE.2017.8074959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-Means Clustering is one of the method for image segmentation which will subtract the interest area from background. By using K-Means Clustering, thermal image is divided into 2 layers which separates the hotter region from the background image. This will ease the hot spot detection on thermal infrared images. This paper presents work on the implementation of K-Means Clustering onto thermal images. The algorithm for thermal infrared image segmentation using K-Means Clustering was developed and executed using MATLAB R2015a software. It was proven that K-Means Clustering ease the hot spot detection from the thermal images.\",\"PeriodicalId\":298950,\"journal\":{\"name\":\"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAIE.2017.8074959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2017.8074959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

k均值聚类是一种从背景中去除感兴趣区域的图像分割方法。采用K-Means聚类方法,将热图像分成2层,将热区域与背景图像分离。这将简化热红外图像的热点检测。本文介绍了在热图像上实现k -均值聚类的工作。基于K-Means聚类的热红外图像分割算法在MATLAB R2015a软件下开发并执行。结果表明,k -均值聚类可以简化热图像的热点检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of K-Means clustering in hot spot detection for thermal infrared images
K-Means Clustering is one of the method for image segmentation which will subtract the interest area from background. By using K-Means Clustering, thermal image is divided into 2 layers which separates the hotter region from the background image. This will ease the hot spot detection on thermal infrared images. This paper presents work on the implementation of K-Means Clustering onto thermal images. The algorithm for thermal infrared image segmentation using K-Means Clustering was developed and executed using MATLAB R2015a software. It was proven that K-Means Clustering ease the hot spot detection from the thermal images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信