{"title":"瑜伽姿势识别的机器学习技术实现","authors":"Yash Agrawal, Yash Shah, Abhishek Sharma","doi":"10.1109/CSNT48778.2020.9115758","DOIUrl":null,"url":null,"abstract":"In recent years, yoga has become part of life for many people across the world. Due to this there is the need of scientific analysis of y postures. It has been observed that pose detection techniques can be used to identify the postures and also to assist the people to perform yoga more accurately. Recognition of posture is a challenging task due to the lack availability of dataset and also to detect posture on real-time bases. To overcome this problem a large dataset has been created which contain at least 5500 images of ten different yoga pose and used a tf-pose estimation Algorithm which draws a skeleton of a human body on the real-time bases. Angles of the joints in the human body are extracted using the tf-pose skeleton and used them as a feature to implement various machine learning models. 80% of the dataset has been used for training purpose and 20% of the dataset has been used for testing. This dataset is tested on different Machine learning classification models and achieves an accuracy of 99.04% by using a Random Forest Classifier.","PeriodicalId":131745,"journal":{"name":"2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Implementation of Machine Learning Technique for Identification of Yoga Poses\",\"authors\":\"Yash Agrawal, Yash Shah, Abhishek Sharma\",\"doi\":\"10.1109/CSNT48778.2020.9115758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, yoga has become part of life for many people across the world. Due to this there is the need of scientific analysis of y postures. It has been observed that pose detection techniques can be used to identify the postures and also to assist the people to perform yoga more accurately. Recognition of posture is a challenging task due to the lack availability of dataset and also to detect posture on real-time bases. To overcome this problem a large dataset has been created which contain at least 5500 images of ten different yoga pose and used a tf-pose estimation Algorithm which draws a skeleton of a human body on the real-time bases. Angles of the joints in the human body are extracted using the tf-pose skeleton and used them as a feature to implement various machine learning models. 80% of the dataset has been used for training purpose and 20% of the dataset has been used for testing. This dataset is tested on different Machine learning classification models and achieves an accuracy of 99.04% by using a Random Forest Classifier.\",\"PeriodicalId\":131745,\"journal\":{\"name\":\"2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT48778.2020.9115758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT48778.2020.9115758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Machine Learning Technique for Identification of Yoga Poses
In recent years, yoga has become part of life for many people across the world. Due to this there is the need of scientific analysis of y postures. It has been observed that pose detection techniques can be used to identify the postures and also to assist the people to perform yoga more accurately. Recognition of posture is a challenging task due to the lack availability of dataset and also to detect posture on real-time bases. To overcome this problem a large dataset has been created which contain at least 5500 images of ten different yoga pose and used a tf-pose estimation Algorithm which draws a skeleton of a human body on the real-time bases. Angles of the joints in the human body are extracted using the tf-pose skeleton and used them as a feature to implement various machine learning models. 80% of the dataset has been used for training purpose and 20% of the dataset has been used for testing. This dataset is tested on different Machine learning classification models and achieves an accuracy of 99.04% by using a Random Forest Classifier.