一种高效的红外图像面部表情识别系统

A. Poursaberi, S. Yanushkevich, M. Gavrilova
{"title":"一种高效的红外图像面部表情识别系统","authors":"A. Poursaberi, S. Yanushkevich, M. Gavrilova","doi":"10.1109/EST.2013.11","DOIUrl":null,"url":null,"abstract":"Most of the reported algorithms for facial expression recognition (FER) are based on visible expression databases. However, visible images are affected by illumination variations which can cause significant disparities in image appearance and texture. In this paper preliminary results of a new FER algorithm, using Gauss-Laguerre (GL) filter of circular harmonic wavelets to extract features for infrared images, are presented. By using GL filters with properly tuned-parameters, it is possible to generate a set of redundant wavelets that enable an accurate extraction of complex texture features from an infrared image. In addition, we utilize GL filters that are highly suitable for FER in visible images. The combination of infrared and visible FER using common feature extraction approach saves time and reduces the complexity in a multiple-sensors scenario. K-nearest neighbor is used for classification on OTCBVS and USTC-NVIE databases. The results show effective performance for using GL filters in FER for infrared images.","PeriodicalId":213735,"journal":{"name":"2013 Fourth International Conference on Emerging Security Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Efficient Facial Expression Recognition System in Infrared Images\",\"authors\":\"A. Poursaberi, S. Yanushkevich, M. Gavrilova\",\"doi\":\"10.1109/EST.2013.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the reported algorithms for facial expression recognition (FER) are based on visible expression databases. However, visible images are affected by illumination variations which can cause significant disparities in image appearance and texture. In this paper preliminary results of a new FER algorithm, using Gauss-Laguerre (GL) filter of circular harmonic wavelets to extract features for infrared images, are presented. By using GL filters with properly tuned-parameters, it is possible to generate a set of redundant wavelets that enable an accurate extraction of complex texture features from an infrared image. In addition, we utilize GL filters that are highly suitable for FER in visible images. The combination of infrared and visible FER using common feature extraction approach saves time and reduces the complexity in a multiple-sensors scenario. K-nearest neighbor is used for classification on OTCBVS and USTC-NVIE databases. The results show effective performance for using GL filters in FER for infrared images.\",\"PeriodicalId\":213735,\"journal\":{\"name\":\"2013 Fourth International Conference on Emerging Security Technologies\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth International Conference on Emerging Security Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EST.2013.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2013.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前已有的面部表情识别算法大多是基于可见表情数据库的。然而,可见图像受到光照变化的影响,这可能导致图像外观和纹理的显着差异。本文给出了一种利用圆形谐波小波的高斯-拉盖尔(GL)滤波器提取红外图像特征的FER算法的初步结果。通过使用具有适当调整参数的GL滤波器,可以生成一组冗余小波,从而能够准确地从红外图像中提取复杂的纹理特征。此外,我们还使用了GL滤波器,它非常适合于可见光图像中的FER。在多传感器场景中,使用通用特征提取方法结合红外和可见光FER可以节省时间并降低复杂性。在OTCBVS和USTC-NVIE数据库上使用k近邻进行分类。结果表明,GL滤波器用于红外图像的FER处理具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Facial Expression Recognition System in Infrared Images
Most of the reported algorithms for facial expression recognition (FER) are based on visible expression databases. However, visible images are affected by illumination variations which can cause significant disparities in image appearance and texture. In this paper preliminary results of a new FER algorithm, using Gauss-Laguerre (GL) filter of circular harmonic wavelets to extract features for infrared images, are presented. By using GL filters with properly tuned-parameters, it is possible to generate a set of redundant wavelets that enable an accurate extraction of complex texture features from an infrared image. In addition, we utilize GL filters that are highly suitable for FER in visible images. The combination of infrared and visible FER using common feature extraction approach saves time and reduces the complexity in a multiple-sensors scenario. K-nearest neighbor is used for classification on OTCBVS and USTC-NVIE databases. The results show effective performance for using GL filters in FER for infrared images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信