Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei
{"title":"复杂背景下伪装人脸的检测与识别","authors":"Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei","doi":"10.1109/CIBIM.2014.7015448","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Disguised face detection and recognition under the complex background\",\"authors\":\"Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei\",\"doi\":\"10.1109/CIBIM.2014.7015448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disguised face detection and recognition under the complex background
In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.