复杂背景下伪装人脸的检测与识别

Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei
{"title":"复杂背景下伪装人脸的检测与识别","authors":"Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei","doi":"10.1109/CIBIM.2014.7015448","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Disguised face detection and recognition under the complex background\",\"authors\":\"Jing Li, Bin Li, Yong Xu, Kaixuan Lu, Ke Yan, Lunke Fei\",\"doi\":\"10.1109/CIBIM.2014.7015448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种有效的复杂背景下伪装人脸检测与识别方法。这个方法包括两个阶段。第一阶段确定对象是否是人。在此阶段,我们提出了先动态后静态的前景目标检测策略。该策略利用更新的基于学习的码本模型进行运动目标检测,并使用基于局部二值模式(LBP) +定向梯度直方图(HOG)特征的头肩检测进行静态目标检测。第二阶段确定面部是否伪装,以及伪装的类别。实验表明,该方法能够在复杂背景下实时检测出被伪装的人脸,并取得了可接受的伪装人脸识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disguised face detection and recognition under the complex background
In this paper, we propose an effective method for disguised face detection and recognition under the complex background. This method consists of two stages. The first stage determines whether the object is a person. In this stage, we propose the first-dynamic-then-static foreground object detection strategy. This strategy exploits the updated learning-based codebook model for moving object detection and uses the Local Binary Patterns (LBP) + Histogram of Oriented Gradients (HOG) feature-based head-shoulder detection for static target detection. The second stage determines whether the face is disguised and the classes of disguises. Experiments show that our method can detect disguised faces in real time under the complex background and achieve acceptable disguised face recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信