{"title":"奶牛:一个互联网丰富和质量意识网络服务搜索引擎","authors":"Meng Li, Junfeng Zhao, Lijie Wang, Sibo Cai, Bing Xie","doi":"10.1109/ICWS.2011.49","DOIUrl":null,"url":null,"abstract":"With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.","PeriodicalId":118512,"journal":{"name":"2011 IEEE International Conference on Web Services","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"CoWS: An Internet-Enriched and Quality-Aware Web Services Search Engine\",\"authors\":\"Meng Li, Junfeng Zhao, Lijie Wang, Sibo Cai, Bing Xie\",\"doi\":\"10.1109/ICWS.2011.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.\",\"PeriodicalId\":118512,\"journal\":{\"name\":\"2011 IEEE International Conference on Web Services\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2011.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CoWS: An Internet-Enriched and Quality-Aware Web Services Search Engine
With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.