发现社交媒体流中的关键时刻

C. Buntain, Jimmy J. Lin, J. Golbeck
{"title":"发现社交媒体流中的关键时刻","authors":"C. Buntain, Jimmy J. Lin, J. Golbeck","doi":"10.1109/CCNC.2016.7444808","DOIUrl":null,"url":null,"abstract":"This paper introduces a general technique, called LABurst, for identifying key moments, or moments of high impact, in social media streams without the need for domain-specific information or seed keywords. We leverage machine learning to model temporal patterns around bursts in Twitter's unfiltered public sample stream and build a classifier to identify tokens experiencing these bursts. We show LABurst performs competitively with existing burst detection techniques while simultaneously providing insight into and detection of unanticipated moments. To demonstrate our approach's potential, we compare two baseline event-detection algorithms with our language-agnostic algorithm to detect key moments across three major sporting competitions: 2013 World Series, 2014 Super Bowl, and 2014 World Cup. Our results show LABurst outperforms a time series analysis baseline and is competitive with a domain-specific baseline even though we operate without any domain knowledge. We then go further by transferring LABurst's models learned in the sports domain to the task of identifying earthquakes in Japan and show our method detects large spikes in earthquake-related tokens within two minutes of the actual event.","PeriodicalId":399247,"journal":{"name":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Discovering key moments in social media streams\",\"authors\":\"C. Buntain, Jimmy J. Lin, J. Golbeck\",\"doi\":\"10.1109/CCNC.2016.7444808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a general technique, called LABurst, for identifying key moments, or moments of high impact, in social media streams without the need for domain-specific information or seed keywords. We leverage machine learning to model temporal patterns around bursts in Twitter's unfiltered public sample stream and build a classifier to identify tokens experiencing these bursts. We show LABurst performs competitively with existing burst detection techniques while simultaneously providing insight into and detection of unanticipated moments. To demonstrate our approach's potential, we compare two baseline event-detection algorithms with our language-agnostic algorithm to detect key moments across three major sporting competitions: 2013 World Series, 2014 Super Bowl, and 2014 World Cup. Our results show LABurst outperforms a time series analysis baseline and is competitive with a domain-specific baseline even though we operate without any domain knowledge. We then go further by transferring LABurst's models learned in the sports domain to the task of identifying earthquakes in Japan and show our method detects large spikes in earthquake-related tokens within two minutes of the actual event.\",\"PeriodicalId\":399247,\"journal\":{\"name\":\"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2016.7444808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2016.7444808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了一种称为LABurst的通用技术,用于识别社交媒体流中的关键时刻或高影响时刻,而不需要特定领域的信息或种子关键字。我们利用机器学习来模拟Twitter未经过滤的公共样本流中爆发的时间模式,并构建一个分类器来识别经历这些爆发的令牌。我们展示了LABurst与现有的突发检测技术相比具有竞争力,同时提供了对意外时刻的洞察和检测。为了证明我们的方法的潜力,我们将两个基线事件检测算法与我们的语言无关算法进行比较,以检测三个主要体育赛事的关键时刻:2013年世界大赛、2014年超级碗和2014年世界杯。我们的结果表明,LABurst优于时间序列分析基线,即使我们在没有任何领域知识的情况下操作,也可以与特定领域的基线竞争。然后,我们进一步将LABurst在体育领域学习到的模型转移到识别日本地震的任务中,并显示我们的方法在实际事件发生后两分钟内检测到与地震相关的标记的大峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering key moments in social media streams
This paper introduces a general technique, called LABurst, for identifying key moments, or moments of high impact, in social media streams without the need for domain-specific information or seed keywords. We leverage machine learning to model temporal patterns around bursts in Twitter's unfiltered public sample stream and build a classifier to identify tokens experiencing these bursts. We show LABurst performs competitively with existing burst detection techniques while simultaneously providing insight into and detection of unanticipated moments. To demonstrate our approach's potential, we compare two baseline event-detection algorithms with our language-agnostic algorithm to detect key moments across three major sporting competitions: 2013 World Series, 2014 Super Bowl, and 2014 World Cup. Our results show LABurst outperforms a time series analysis baseline and is competitive with a domain-specific baseline even though we operate without any domain knowledge. We then go further by transferring LABurst's models learned in the sports domain to the task of identifying earthquakes in Japan and show our method detects large spikes in earthquake-related tokens within two minutes of the actual event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信