分布式机器学习网络拓扑生成的统一、灵活框架

Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan
{"title":"分布式机器学习网络拓扑生成的统一、灵活框架","authors":"Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan","doi":"10.1145/3600061.3603132","DOIUrl":null,"url":null,"abstract":"In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified, Flexible Framework in Network Topology Generation for Distributed Machine Learning\",\"authors\":\"Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan\",\"doi\":\"10.1145/3600061.3603132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.\",\"PeriodicalId\":228934,\"journal\":{\"name\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600061.3603132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3603132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用自顶向下的设计方法和组合设计理论,提出了一种统一的DML服务器中心网络拓扑设计框架。仿真结果表明,该框架能够有效地支持各种DML任务。我们的框架可以生成兼容的拓扑,以满足各种资源约束和不同的DML任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified, Flexible Framework in Network Topology Generation for Distributed Machine Learning
In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信