自然图像的高阶统计量及其内在维数选择算子的利用

G. Krieger, C. Zetzsche, E. Barth
{"title":"自然图像的高阶统计量及其内在维数选择算子的利用","authors":"G. Krieger, C. Zetzsche, E. Barth","doi":"10.1109/HOST.1997.613505","DOIUrl":null,"url":null,"abstract":"Natural images contain considerable statistical redundancies beyond the level of second-order correlations. To identify the nature of these higher-order dependencies, we analyze the bispectra and trispectra of natural images. Our investigations reveal substantial statistical dependencies between those frequency components which are aligned to each other with respect to orientation. We argue that operators which are selective to local intrinsic dimensionality can optimally exploit such redundancies. We also show that the polyspectral structure we find for natural images helps to understand the hitherto unexplained superiority of orientation-selective filter decompositions over isotropic schemes like the Laplacian pyramid. However any essentially linear scheme can only partially exploit this higher-order redundancy. We therefore propose nonlinear i2D-selective operators which exhibit close resemblance to hypercomplex and end-stopped cells in the visual cortex. The function of these operators can be interpreted as a higher-order whitening of the input signal.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Higher-order statistics of natural images and their exploitation by operators selective to intrinsic dimensionality\",\"authors\":\"G. Krieger, C. Zetzsche, E. Barth\",\"doi\":\"10.1109/HOST.1997.613505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural images contain considerable statistical redundancies beyond the level of second-order correlations. To identify the nature of these higher-order dependencies, we analyze the bispectra and trispectra of natural images. Our investigations reveal substantial statistical dependencies between those frequency components which are aligned to each other with respect to orientation. We argue that operators which are selective to local intrinsic dimensionality can optimally exploit such redundancies. We also show that the polyspectral structure we find for natural images helps to understand the hitherto unexplained superiority of orientation-selective filter decompositions over isotropic schemes like the Laplacian pyramid. However any essentially linear scheme can only partially exploit this higher-order redundancy. We therefore propose nonlinear i2D-selective operators which exhibit close resemblance to hypercomplex and end-stopped cells in the visual cortex. The function of these operators can be interpreted as a higher-order whitening of the input signal.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

自然图像包含相当多的统计冗余,超出了二阶相关的水平。为了确定这些高阶依赖关系的性质,我们分析了自然图像的双光谱和三光谱。我们的调查揭示了这些频率成分之间的实质性统计依赖关系,这些频率成分相对于方向彼此对齐。我们认为对局部固有维数有选择性的算子可以最优地利用这种冗余。我们还表明,我们在自然图像中发现的多光谱结构有助于理解迄今为止无法解释的取向选择性滤波器分解优于各向同性方案(如拉普拉斯金字塔)的优越性。然而,任何本质上线性的方案都只能部分地利用这种高阶冗余。因此,我们提出非线性i2d选择算子,它与视觉皮层中的超复杂和末端停止细胞非常相似。这些运算符的作用可以解释为输入信号的高阶白化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order statistics of natural images and their exploitation by operators selective to intrinsic dimensionality
Natural images contain considerable statistical redundancies beyond the level of second-order correlations. To identify the nature of these higher-order dependencies, we analyze the bispectra and trispectra of natural images. Our investigations reveal substantial statistical dependencies between those frequency components which are aligned to each other with respect to orientation. We argue that operators which are selective to local intrinsic dimensionality can optimally exploit such redundancies. We also show that the polyspectral structure we find for natural images helps to understand the hitherto unexplained superiority of orientation-selective filter decompositions over isotropic schemes like the Laplacian pyramid. However any essentially linear scheme can only partially exploit this higher-order redundancy. We therefore propose nonlinear i2D-selective operators which exhibit close resemblance to hypercomplex and end-stopped cells in the visual cortex. The function of these operators can be interpreted as a higher-order whitening of the input signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信