{"title":"人类智慧的形式化:著作权法实质相似性的定量框架","authors":"Sarah Scheffler, Eran Tromer, Mayank Varia","doi":"10.1145/3511265.3550444","DOIUrl":null,"url":null,"abstract":"A central notion in U.S. copyright law is judging the substantial similarity between an original and an (allegedly) derived work. Capturing this notion has proven elusive, and the many approaches offered by case law and legal scholarship are often ill-defined, contradictory, or internally-inconsistent. This work suggests that key parts of the substantial-similarity puzzle are amenable to modeling inspired by theoretical computer science. Our proposed framework quantitatively evaluates how much ''novelty'' is needed to produce the derived work with access to the original work, versus reproducing it without access to the copyrighted elements of the original work. ''Novelty'' is captured by a computational notion of description length, in the spirit of Kolmogorov-Levin complexity, which is robust to mechanical transformations and availability of contextual information. This results in an actionable framework that could be used by courts as an aid for deciding substantial similarity. We evaluate it on several pivotal cases in copyright law and observe that the results are consistent with the rulings, and are philosophically aligned with the abstraction-filtration-comparison test of Altai.","PeriodicalId":254114,"journal":{"name":"Proceedings of the 2022 Symposium on Computer Science and Law","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Formalizing Human Ingenuity: A Quantitative Framework for Copyright Law's Substantial Similarity\",\"authors\":\"Sarah Scheffler, Eran Tromer, Mayank Varia\",\"doi\":\"10.1145/3511265.3550444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central notion in U.S. copyright law is judging the substantial similarity between an original and an (allegedly) derived work. Capturing this notion has proven elusive, and the many approaches offered by case law and legal scholarship are often ill-defined, contradictory, or internally-inconsistent. This work suggests that key parts of the substantial-similarity puzzle are amenable to modeling inspired by theoretical computer science. Our proposed framework quantitatively evaluates how much ''novelty'' is needed to produce the derived work with access to the original work, versus reproducing it without access to the copyrighted elements of the original work. ''Novelty'' is captured by a computational notion of description length, in the spirit of Kolmogorov-Levin complexity, which is robust to mechanical transformations and availability of contextual information. This results in an actionable framework that could be used by courts as an aid for deciding substantial similarity. We evaluate it on several pivotal cases in copyright law and observe that the results are consistent with the rulings, and are philosophically aligned with the abstraction-filtration-comparison test of Altai.\",\"PeriodicalId\":254114,\"journal\":{\"name\":\"Proceedings of the 2022 Symposium on Computer Science and Law\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 Symposium on Computer Science and Law\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511265.3550444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Symposium on Computer Science and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511265.3550444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formalizing Human Ingenuity: A Quantitative Framework for Copyright Law's Substantial Similarity
A central notion in U.S. copyright law is judging the substantial similarity between an original and an (allegedly) derived work. Capturing this notion has proven elusive, and the many approaches offered by case law and legal scholarship are often ill-defined, contradictory, or internally-inconsistent. This work suggests that key parts of the substantial-similarity puzzle are amenable to modeling inspired by theoretical computer science. Our proposed framework quantitatively evaluates how much ''novelty'' is needed to produce the derived work with access to the original work, versus reproducing it without access to the copyrighted elements of the original work. ''Novelty'' is captured by a computational notion of description length, in the spirit of Kolmogorov-Levin complexity, which is robust to mechanical transformations and availability of contextual information. This results in an actionable framework that could be used by courts as an aid for deciding substantial similarity. We evaluate it on several pivotal cases in copyright law and observe that the results are consistent with the rulings, and are philosophically aligned with the abstraction-filtration-comparison test of Altai.