基于自适应正则化的高频成分缺失图像迭代恢复

J. Maeda, K. Murata
{"title":"基于自适应正则化的高频成分缺失图像迭代恢复","authors":"J. Maeda, K. Murata","doi":"10.1364/srs.1986.fb3","DOIUrl":null,"url":null,"abstract":"The problem of restoring the details of bandlimited images of spatial finite extent or recovering the missing high-frequency components has recently been discussed extensively. Since the present problem is ill-conditioned, certain types of regularization techniques are required [1-5]. Moreover, some types of a priori information or constraints are used to overcome the ambiguity and instability of the solution [6-9].","PeriodicalId":262149,"journal":{"name":"Topical Meeting On Signal Recovery and Synthesis II","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Restoration of Images with Missing High-Frequency Components Using Adaptive Regularization\",\"authors\":\"J. Maeda, K. Murata\",\"doi\":\"10.1364/srs.1986.fb3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of restoring the details of bandlimited images of spatial finite extent or recovering the missing high-frequency components has recently been discussed extensively. Since the present problem is ill-conditioned, certain types of regularization techniques are required [1-5]. Moreover, some types of a priori information or constraints are used to overcome the ambiguity and instability of the solution [6-9].\",\"PeriodicalId\":262149,\"journal\":{\"name\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1986.fb3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting On Signal Recovery and Synthesis II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1986.fb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恢复空间有限范围的带限图像的细节或恢复缺失的高频成分的问题近年来得到了广泛的讨论。由于目前的问题是病态的,因此需要某些类型的正则化技术[1-5]。此外,还使用了一些类型的先验信息或约束来克服解的模糊性和不稳定性[6-9]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Restoration of Images with Missing High-Frequency Components Using Adaptive Regularization
The problem of restoring the details of bandlimited images of spatial finite extent or recovering the missing high-frequency components has recently been discussed extensively. Since the present problem is ill-conditioned, certain types of regularization techniques are required [1-5]. Moreover, some types of a priori information or constraints are used to overcome the ambiguity and instability of the solution [6-9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信