基于修改随机密钥的遗传算法求解集装箱装载问题

Mohammad Sadegh Arefi, H. Rezaei
{"title":"基于修改随机密钥的遗传算法求解集装箱装载问题","authors":"Mohammad Sadegh Arefi, H. Rezaei","doi":"10.14419/JACST.V4I1.4348","DOIUrl":null,"url":null,"abstract":"This article presents a solution to the container loading problem. Container loading problem deals with how to put the cube boxes with different sizes in a container. Our proposed method is based on a particular kind of genetic algorithm based on biased random keys. In the proposed algorithm, we will face generations' extinction. Population decreases with time and with the staircase changes in the rate of elitism, the algorithm is guided towards the global optimum. Biased random keys in the proposed method are provided as discrete. The algorithm also provides the chromosomes that store more than one ability. In order to solve container loading using a placement strategy, due to the size of the boxes and containers, the containers are classified as small units and equal unites in size. Finally the algorithm presented in this paper was compared with three other methods that are based on evolutionary algorithms. The results show that the proposed algorithm has better performance in terms of results and performance time in relation to other methods.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Problem solving of container loading using genetic algorithm based on modified random keys\",\"authors\":\"Mohammad Sadegh Arefi, H. Rezaei\",\"doi\":\"10.14419/JACST.V4I1.4348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a solution to the container loading problem. Container loading problem deals with how to put the cube boxes with different sizes in a container. Our proposed method is based on a particular kind of genetic algorithm based on biased random keys. In the proposed algorithm, we will face generations' extinction. Population decreases with time and with the staircase changes in the rate of elitism, the algorithm is guided towards the global optimum. Biased random keys in the proposed method are provided as discrete. The algorithm also provides the chromosomes that store more than one ability. In order to solve container loading using a placement strategy, due to the size of the boxes and containers, the containers are classified as small units and equal unites in size. Finally the algorithm presented in this paper was compared with three other methods that are based on evolutionary algorithms. The results show that the proposed algorithm has better performance in terms of results and performance time in relation to other methods.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/JACST.V4I1.4348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V4I1.4348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种解决集装箱装载问题的方法。集装箱装载问题是如何将不同尺寸的立方体箱子装入一个集装箱的问题。我们提出的方法是基于一种特殊的基于有偏随机密钥的遗传算法。在提出的算法中,我们将面临世代灭绝。种群数量随着时间的推移而减少,随着精英率的阶梯变化,该算法被引导到全局最优。该方法中的有偏随机键是离散的。该算法还提供了存储多种能力的染色体。为了使用放置策略解决集装箱装载问题,由于箱子和集装箱的大小,集装箱被划分为小单元和大小相等的单元。最后,将本文提出的算法与其他三种基于进化算法的方法进行了比较。结果表明,与其他方法相比,该算法在结果和性能时间上都具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problem solving of container loading using genetic algorithm based on modified random keys
This article presents a solution to the container loading problem. Container loading problem deals with how to put the cube boxes with different sizes in a container. Our proposed method is based on a particular kind of genetic algorithm based on biased random keys. In the proposed algorithm, we will face generations' extinction. Population decreases with time and with the staircase changes in the rate of elitism, the algorithm is guided towards the global optimum. Biased random keys in the proposed method are provided as discrete. The algorithm also provides the chromosomes that store more than one ability. In order to solve container loading using a placement strategy, due to the size of the boxes and containers, the containers are classified as small units and equal unites in size. Finally the algorithm presented in this paper was compared with three other methods that are based on evolutionary algorithms. The results show that the proposed algorithm has better performance in terms of results and performance time in relation to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信