基于视觉的业余无人机公共安全检测算法

Kainat Abbasi, A. Batool, Fawad, Muhammad Adeel Asghar, A. Saeed, Muhammad Jamil Khan, M. Rehman
{"title":"基于视觉的业余无人机公共安全检测算法","authors":"Kainat Abbasi, A. Batool, Fawad, Muhammad Adeel Asghar, A. Saeed, Muhammad Jamil Khan, M. Rehman","doi":"10.1109/UCET.2019.8881879","DOIUrl":null,"url":null,"abstract":"Drones will be widely used in the smart cities of the future for the wireless approach, supplying goods, and for conserving the security of smart cities. Apart from the various benefits of the drones, they pose significant challenges and public concerns that need to be tackled. We propose an amenable framework to detect malicious drone and ensure public safety. The proposed model is validated using 400 images with various challenges such as occlusion, scale variation, blurriness, background clutter, and low illumination. After extracting the features using ResNet50 model, we applied SVM's RBF kernel for the classification. The classification accuracy presented in the confusion matrix for this model came out to be the highest in comparison to other state-of-the-art models.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Vision-Based Amateur Drone Detection Algorithm for Public Safety Applications\",\"authors\":\"Kainat Abbasi, A. Batool, Fawad, Muhammad Adeel Asghar, A. Saeed, Muhammad Jamil Khan, M. Rehman\",\"doi\":\"10.1109/UCET.2019.8881879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones will be widely used in the smart cities of the future for the wireless approach, supplying goods, and for conserving the security of smart cities. Apart from the various benefits of the drones, they pose significant challenges and public concerns that need to be tackled. We propose an amenable framework to detect malicious drone and ensure public safety. The proposed model is validated using 400 images with various challenges such as occlusion, scale variation, blurriness, background clutter, and low illumination. After extracting the features using ResNet50 model, we applied SVM's RBF kernel for the classification. The classification accuracy presented in the confusion matrix for this model came out to be the highest in comparison to other state-of-the-art models.\",\"PeriodicalId\":169373,\"journal\":{\"name\":\"2019 UK/ China Emerging Technologies (UCET)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 UK/ China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET.2019.8881879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无人机将在未来的智慧城市中广泛应用于无线方式,供应货物以及保护智慧城市的安全。除了无人机的各种好处之外,它们也带来了重大的挑战和公众的担忧,需要加以解决。我们提出了一个适用的框架来检测恶意无人机,确保公共安全。使用400张具有遮挡、尺度变化、模糊、背景杂波和低照度等各种挑战的图像对该模型进行了验证。利用ResNet50模型提取特征后,应用SVM的RBF核进行分类。与其他最先进的模型相比,该模型在混淆矩阵中给出的分类精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vision-Based Amateur Drone Detection Algorithm for Public Safety Applications
Drones will be widely used in the smart cities of the future for the wireless approach, supplying goods, and for conserving the security of smart cities. Apart from the various benefits of the drones, they pose significant challenges and public concerns that need to be tackled. We propose an amenable framework to detect malicious drone and ensure public safety. The proposed model is validated using 400 images with various challenges such as occlusion, scale variation, blurriness, background clutter, and low illumination. After extracting the features using ResNet50 model, we applied SVM's RBF kernel for the classification. The classification accuracy presented in the confusion matrix for this model came out to be the highest in comparison to other state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信