大规模并行系统的可扩展单源最短路径算法

Venkatesan T. Chakaravarthy, Fabio Checconi, F. Petrini, Yogish Sabharwal
{"title":"大规模并行系统的可扩展单源最短路径算法","authors":"Venkatesan T. Chakaravarthy, Fabio Checconi, F. Petrini, Yogish Sabharwal","doi":"10.1109/IPDPS.2014.96","DOIUrl":null,"url":null,"abstract":"In the single-source shortest path (SSSP) problem, we have to find the shortest paths from a source vertex v to all other vertices in a graph. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. The extensive performance analysis shows that our algorithms work well on scale-free and real-world graphs. In the largest tested configuration, an R-MAT graph with 238 vertices and 242 edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems\",\"authors\":\"Venkatesan T. Chakaravarthy, Fabio Checconi, F. Petrini, Yogish Sabharwal\",\"doi\":\"10.1109/IPDPS.2014.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the single-source shortest path (SSSP) problem, we have to find the shortest paths from a source vertex v to all other vertices in a graph. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. The extensive performance analysis shows that our algorithms work well on scale-free and real-world graphs. In the largest tested configuration, an R-MAT graph with 238 vertices and 242 edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

在单源最短路径(SSSP)问题中,我们必须找到从源顶点v到图中所有其他顶点的最短路径。在本文中,我们介绍了一种新的并行算法,它由Bellman-Ford算法和Delta-stepping算法衍生而来。我们采用各种修剪技术,如边缘分类和方向优化,以显着减少节点间通信流量,并提出负载均衡策略来处理更高度的顶点。广泛的性能分析表明,我们的算法在无标度和真实世界的图形上工作得很好。在最大的测试配置中,一个在32,768个Blue Gene/Q节点上具有238个顶点和242条边的R-MAT图,我们已经实现了每秒3万亿边(TTEPS)的处理速率,比最佳公布的结果提高了四个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems
In the single-source shortest path (SSSP) problem, we have to find the shortest paths from a source vertex v to all other vertices in a graph. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. The extensive performance analysis shows that our algorithms work well on scale-free and real-world graphs. In the largest tested configuration, an R-MAT graph with 238 vertices and 242 edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信