多标签数据的原型选择与降维

Hemavati, V. Devi, Seba Ann Kuruvilla, R. Aparna
{"title":"多标签数据的原型选择与降维","authors":"Hemavati, V. Devi, Seba Ann Kuruvilla, R. Aparna","doi":"10.1145/3371158.3371184","DOIUrl":null,"url":null,"abstract":"Multi-label classification problem is one of the most general and relevant problems in the area of classification, where each item of the evaluated dataset is associated with more than one label. This paper discusses novel algorithms for prototype selection and dimensionality reduction on multi-label data. We have extended CNN (Condensed Nearest Neighbor) algorithm for multi-label data. We have also worked on an extension of the Class Augmented PCA(CA-PCA) method for multi-label data. These methods have been implemented on benchmark multi-label datasets and found to give good results.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prototype Selection and Dimensionality Reduction on Multi-Label Data\",\"authors\":\"Hemavati, V. Devi, Seba Ann Kuruvilla, R. Aparna\",\"doi\":\"10.1145/3371158.3371184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label classification problem is one of the most general and relevant problems in the area of classification, where each item of the evaluated dataset is associated with more than one label. This paper discusses novel algorithms for prototype selection and dimensionality reduction on multi-label data. We have extended CNN (Condensed Nearest Neighbor) algorithm for multi-label data. We have also worked on an extension of the Class Augmented PCA(CA-PCA) method for multi-label data. These methods have been implemented on benchmark multi-label datasets and found to give good results.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多标签分类问题是分类领域中最普遍和最相关的问题之一,其中评估数据集的每个项目都与多个标签相关联。本文讨论了多标签数据的原型选择和降维算法。我们扩展了CNN (Condensed Nearest Neighbor)算法用于多标签数据。我们还对多标签数据的类增广PCA(CA-PCA)方法进行了扩展。这些方法在基准多标签数据集上实现,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototype Selection and Dimensionality Reduction on Multi-Label Data
Multi-label classification problem is one of the most general and relevant problems in the area of classification, where each item of the evaluated dataset is associated with more than one label. This paper discusses novel algorithms for prototype selection and dimensionality reduction on multi-label data. We have extended CNN (Condensed Nearest Neighbor) algorithm for multi-label data. We have also worked on an extension of the Class Augmented PCA(CA-PCA) method for multi-label data. These methods have been implemented on benchmark multi-label datasets and found to give good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信