群模糊推理系统及R波特征在室性早搏检测中的应用

N. Nuryani, I. Yahya, Anik Lestari
{"title":"群模糊推理系统及R波特征在室性早搏检测中的应用","authors":"N. Nuryani, I. Yahya, Anik Lestari","doi":"10.1109/CYBERNETICSCOM.2013.6865790","DOIUrl":null,"url":null,"abstract":"This article introduces a new strategy to detect a ventricular premature beat (VPB). The strategy utilized a swarm fuzzy inference system (SFIS) and features of the R wave of electrocardiogram. SFIS was a FIS optimized using particle swarm optimization (PSO). The PSO was used to find the optimal parameters of the FIS. The fuzzification part of the FIS used a Gaussian function. The inputs of the FIS were the width and the gradient of the R wave. Using clinical data, the proposed strategy performed well for VPB detection with sensitivity, specificity and accuracy of 99.05%, 99.64% and 99.59%, respectively.","PeriodicalId":351051,"journal":{"name":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Swarm fuzzy inference system and R wave features for ventricular premature beat detection\",\"authors\":\"N. Nuryani, I. Yahya, Anik Lestari\",\"doi\":\"10.1109/CYBERNETICSCOM.2013.6865790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a new strategy to detect a ventricular premature beat (VPB). The strategy utilized a swarm fuzzy inference system (SFIS) and features of the R wave of electrocardiogram. SFIS was a FIS optimized using particle swarm optimization (PSO). The PSO was used to find the optimal parameters of the FIS. The fuzzification part of the FIS used a Gaussian function. The inputs of the FIS were the width and the gradient of the R wave. Using clinical data, the proposed strategy performed well for VPB detection with sensitivity, specificity and accuracy of 99.05%, 99.64% and 99.59%, respectively.\",\"PeriodicalId\":351051,\"journal\":{\"name\":\"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERNETICSCOM.2013.6865790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERNETICSCOM.2013.6865790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍一种检测室性早搏(VPB)的新方法。该策略利用了群模糊推理系统(SFIS)和心电图R波的特点。SFIS是一种采用粒子群算法(PSO)进行优化的FIS。利用粒子群算法求出FIS的最优参数。FIS的模糊化部分使用高斯函数。FIS的输入是R波的宽度和梯度。临床数据表明,该方法检测VPB的灵敏度、特异性和准确性分别为99.05%、99.64%和99.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm fuzzy inference system and R wave features for ventricular premature beat detection
This article introduces a new strategy to detect a ventricular premature beat (VPB). The strategy utilized a swarm fuzzy inference system (SFIS) and features of the R wave of electrocardiogram. SFIS was a FIS optimized using particle swarm optimization (PSO). The PSO was used to find the optimal parameters of the FIS. The fuzzification part of the FIS used a Gaussian function. The inputs of the FIS were the width and the gradient of the R wave. Using clinical data, the proposed strategy performed well for VPB detection with sensitivity, specificity and accuracy of 99.05%, 99.64% and 99.59%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信