基于生物启发的交通标志识别层次模型

Amr Abdel Aziz, I. Imam, A. Shoukry
{"title":"基于生物启发的交通标志识别层次模型","authors":"Amr Abdel Aziz, I. Imam, A. Shoukry","doi":"10.1109/ICCTA35431.2014.9521641","DOIUrl":null,"url":null,"abstract":"In this research, a study of the Hierarchical Temporal Memory (HTM) model using the Numenta Implementation “Nupic v1.7” and an investigation of its performance in solving the German traffic sign recognition task using standard benchmark data is conducted. Its performance is compared to that of a state of the art Multi-Column Deep Neural Network (MCDNN) that has been proved to exceed the human recognition accuracy for the same task.","PeriodicalId":162170,"journal":{"name":"2014 24th International Conference on Computer Theory and Applications (ICCTA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biologically Inspired Hierarchical Model for Traffic Sign Recognition\",\"authors\":\"Amr Abdel Aziz, I. Imam, A. Shoukry\",\"doi\":\"10.1109/ICCTA35431.2014.9521641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a study of the Hierarchical Temporal Memory (HTM) model using the Numenta Implementation “Nupic v1.7” and an investigation of its performance in solving the German traffic sign recognition task using standard benchmark data is conducted. Its performance is compared to that of a state of the art Multi-Column Deep Neural Network (MCDNN) that has been proved to exceed the human recognition accuracy for the same task.\",\"PeriodicalId\":162170,\"journal\":{\"name\":\"2014 24th International Conference on Computer Theory and Applications (ICCTA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 24th International Conference on Computer Theory and Applications (ICCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA35431.2014.9521641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA35431.2014.9521641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用Numenta实现“Nupic v1.7”对分层时间记忆(HTM)模型进行了研究,并使用标准基准数据调查了其在解决德国交通标志识别任务中的性能。它的性能与最先进的多列深度神经网络(MCDNN)的性能进行了比较,MCDNN已被证明在相同的任务中超过了人类的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically Inspired Hierarchical Model for Traffic Sign Recognition
In this research, a study of the Hierarchical Temporal Memory (HTM) model using the Numenta Implementation “Nupic v1.7” and an investigation of its performance in solving the German traffic sign recognition task using standard benchmark data is conducted. Its performance is compared to that of a state of the art Multi-Column Deep Neural Network (MCDNN) that has been proved to exceed the human recognition accuracy for the same task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信