GRU和LSTM网络短期负荷预测的基准

K. Zor, Kurtuluş Buluş
{"title":"GRU和LSTM网络短期负荷预测的基准","authors":"K. Zor, Kurtuluş Buluş","doi":"10.1109/3ICT53449.2021.9581373","DOIUrl":null,"url":null,"abstract":"Recently, electric power systems have been modernised to be integrated with distributed energy systems having intermittent characteristics. Herein, short-term electric load forecasting (STLF), which covers hour, day, or week-ahead predictions of electric loads, is a crucial piece of the modern power system puzzle whose level of complexity has become more and more sophisticated owing to incorporating microgrids and smart grids. Due to the nonlinear feature of electric loads and the uncertainties in the modern power systems, deep learning algorithms are frequently applied to STLF problem which can be described as an arduous challenge because of being affected by several impacts. In this paper, gated recurrent unit (GRU) and long short-term memory (LSTM) networks are implemented in forecasting an hour-ahead electric loads of a large hospital complex located in Adana, Turkey. Overall results belonging to the benchmark of GRU and LSTM networks for STLF revealed that employing GRU networks performed better in terms of mean absolute percentage error (MAPE) by 7.8% and computational time by 15.5% in comparison with utilising LSTM networks.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A benchmark of GRU and LSTM networks for short-term electric load forecasting\",\"authors\":\"K. Zor, Kurtuluş Buluş\",\"doi\":\"10.1109/3ICT53449.2021.9581373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, electric power systems have been modernised to be integrated with distributed energy systems having intermittent characteristics. Herein, short-term electric load forecasting (STLF), which covers hour, day, or week-ahead predictions of electric loads, is a crucial piece of the modern power system puzzle whose level of complexity has become more and more sophisticated owing to incorporating microgrids and smart grids. Due to the nonlinear feature of electric loads and the uncertainties in the modern power systems, deep learning algorithms are frequently applied to STLF problem which can be described as an arduous challenge because of being affected by several impacts. In this paper, gated recurrent unit (GRU) and long short-term memory (LSTM) networks are implemented in forecasting an hour-ahead electric loads of a large hospital complex located in Adana, Turkey. Overall results belonging to the benchmark of GRU and LSTM networks for STLF revealed that employing GRU networks performed better in terms of mean absolute percentage error (MAPE) by 7.8% and computational time by 15.5% in comparison with utilising LSTM networks.\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9581373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,电力系统已经现代化,与具有间歇性特征的分布式能源系统相结合。在此,短期电力负荷预测(STLF)涵盖了一小时、一天或一周之前的电力负荷预测,是现代电力系统难题的关键部分,由于微电网和智能电网的结合,其复杂程度变得越来越复杂。由于电力负荷的非线性特征和现代电力系统的不确定性,深度学习算法被频繁地应用于STLF问题中,该问题受到多种影响,可谓是一项艰巨的挑战。本文将门控循环单元(GRU)和长短期记忆(LSTM)网络应用于土耳其阿达纳一家大型医院综合体的一小时前电力负荷预测。总体结果属于GRU和LSTM网络的STLF基准显示,与使用LSTM网络相比,使用GRU网络在平均绝对百分比误差(MAPE)方面表现更好,平均绝对百分比误差(MAPE)为7.8%,计算时间为15.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A benchmark of GRU and LSTM networks for short-term electric load forecasting
Recently, electric power systems have been modernised to be integrated with distributed energy systems having intermittent characteristics. Herein, short-term electric load forecasting (STLF), which covers hour, day, or week-ahead predictions of electric loads, is a crucial piece of the modern power system puzzle whose level of complexity has become more and more sophisticated owing to incorporating microgrids and smart grids. Due to the nonlinear feature of electric loads and the uncertainties in the modern power systems, deep learning algorithms are frequently applied to STLF problem which can be described as an arduous challenge because of being affected by several impacts. In this paper, gated recurrent unit (GRU) and long short-term memory (LSTM) networks are implemented in forecasting an hour-ahead electric loads of a large hospital complex located in Adana, Turkey. Overall results belonging to the benchmark of GRU and LSTM networks for STLF revealed that employing GRU networks performed better in terms of mean absolute percentage error (MAPE) by 7.8% and computational time by 15.5% in comparison with utilising LSTM networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信