{"title":"混合信号模型检验的符号方法","authors":"Alexander Jesser, L. Hedrich","doi":"10.1109/ASPDAC.2008.4483984","DOIUrl":null,"url":null,"abstract":"In this paper we firstly introduce a novel symbolic model checker (MScheck) for mixed-signal circuits. MScheck is capable to conflate the continuous behavior, typical for analog designs, and the discrete behavior in the digital domain for formal verification. Timing information of both systems will be symbolically stored within multi terminal binary decision diagrams (MTBDDs) for the entire verification procedure. The effectiveness of our approach is demonstrated on a phase locked loop (PLL) by formal verification of the locking property.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A symbolic approach for mixed-signal model checking\",\"authors\":\"Alexander Jesser, L. Hedrich\",\"doi\":\"10.1109/ASPDAC.2008.4483984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we firstly introduce a novel symbolic model checker (MScheck) for mixed-signal circuits. MScheck is capable to conflate the continuous behavior, typical for analog designs, and the discrete behavior in the digital domain for formal verification. Timing information of both systems will be symbolically stored within multi terminal binary decision diagrams (MTBDDs) for the entire verification procedure. The effectiveness of our approach is demonstrated on a phase locked loop (PLL) by formal verification of the locking property.\",\"PeriodicalId\":277556,\"journal\":{\"name\":\"2008 Asia and South Pacific Design Automation Conference\",\"volume\":\"31 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2008.4483984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4483984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A symbolic approach for mixed-signal model checking
In this paper we firstly introduce a novel symbolic model checker (MScheck) for mixed-signal circuits. MScheck is capable to conflate the continuous behavior, typical for analog designs, and the discrete behavior in the digital domain for formal verification. Timing information of both systems will be symbolically stored within multi terminal binary decision diagrams (MTBDDs) for the entire verification procedure. The effectiveness of our approach is demonstrated on a phase locked loop (PLL) by formal verification of the locking property.