Magnus Själander, Gustaf Borgström, M. Klymenko, F. Remacle, S. Kaxiras
{"title":"新兴多值技术中的误差弹性调制技术","authors":"Magnus Själander, Gustaf Borgström, M. Klymenko, F. Remacle, S. Kaxiras","doi":"10.1145/2903150.2903154","DOIUrl":null,"url":null,"abstract":"There exist extensive ongoing research efforts on emerging atomic scale technologies that have the potential to become an alternative to today's CMOS technologies. A common feature among the investigated technologies is that of multi-value devices, in particular, the possibility of implementing quaternary logic and memory. However, multi-value devices tend to be more sensitive to interferences and, thus, have reduced error resilience. We present an architecture based on multi-value devices where we can trade energy efficiency against error resilience. Important data are encoded in a more robust binary format while error tolerant data is encoded in a quaternary format. We show for eight benchmarks an average energy reduction of 14%, 20%, and 32% for the register file, level-one data cache, and main memory, respectively, and for three integer benchmarks, an energy reduction for arithmetic operations of up to 28%. We also show that for a quaternary technology to be viable a raw bit error rate of one error in 100 million or better is required.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Techniques for modulating error resilience in emerging multi-value technologies\",\"authors\":\"Magnus Själander, Gustaf Borgström, M. Klymenko, F. Remacle, S. Kaxiras\",\"doi\":\"10.1145/2903150.2903154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist extensive ongoing research efforts on emerging atomic scale technologies that have the potential to become an alternative to today's CMOS technologies. A common feature among the investigated technologies is that of multi-value devices, in particular, the possibility of implementing quaternary logic and memory. However, multi-value devices tend to be more sensitive to interferences and, thus, have reduced error resilience. We present an architecture based on multi-value devices where we can trade energy efficiency against error resilience. Important data are encoded in a more robust binary format while error tolerant data is encoded in a quaternary format. We show for eight benchmarks an average energy reduction of 14%, 20%, and 32% for the register file, level-one data cache, and main memory, respectively, and for three integer benchmarks, an energy reduction for arithmetic operations of up to 28%. We also show that for a quaternary technology to be viable a raw bit error rate of one error in 100 million or better is required.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2903154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Techniques for modulating error resilience in emerging multi-value technologies
There exist extensive ongoing research efforts on emerging atomic scale technologies that have the potential to become an alternative to today's CMOS technologies. A common feature among the investigated technologies is that of multi-value devices, in particular, the possibility of implementing quaternary logic and memory. However, multi-value devices tend to be more sensitive to interferences and, thus, have reduced error resilience. We present an architecture based on multi-value devices where we can trade energy efficiency against error resilience. Important data are encoded in a more robust binary format while error tolerant data is encoded in a quaternary format. We show for eight benchmarks an average energy reduction of 14%, 20%, and 32% for the register file, level-one data cache, and main memory, respectively, and for three integer benchmarks, an energy reduction for arithmetic operations of up to 28%. We also show that for a quaternary technology to be viable a raw bit error rate of one error in 100 million or better is required.