{"title":"对流层传播的双向分步抛物方程算法:测试和比较","authors":"O. Ozgun, M. Kuzuoglu, G. Apaydin, L. Sevgi","doi":"10.1109/MMW.2010.5605125","DOIUrl":null,"url":null,"abstract":"This paper introduces a two-way split-step parabolic equation propagation tool (2W-SSPE), which is capable of handling both forward and backward scattered waves during groundwave propagation over an irregular terrain, through inhomogeneous atmosphere. The algorithm is calibrated and tested against reference data obtained with the help of image method and the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD).","PeriodicalId":145274,"journal":{"name":"2010 10th Mediterranean Microwave Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Two-way split-step parabolic equation algorithm for tropospheric propagation: Tests and comparisons\",\"authors\":\"O. Ozgun, M. Kuzuoglu, G. Apaydin, L. Sevgi\",\"doi\":\"10.1109/MMW.2010.5605125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a two-way split-step parabolic equation propagation tool (2W-SSPE), which is capable of handling both forward and backward scattered waves during groundwave propagation over an irregular terrain, through inhomogeneous atmosphere. The algorithm is calibrated and tested against reference data obtained with the help of image method and the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD).\",\"PeriodicalId\":145274,\"journal\":{\"name\":\"2010 10th Mediterranean Microwave Symposium\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th Mediterranean Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMW.2010.5605125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th Mediterranean Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMW.2010.5605125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-way split-step parabolic equation algorithm for tropospheric propagation: Tests and comparisons
This paper introduces a two-way split-step parabolic equation propagation tool (2W-SSPE), which is capable of handling both forward and backward scattered waves during groundwave propagation over an irregular terrain, through inhomogeneous atmosphere. The algorithm is calibrated and tested against reference data obtained with the help of image method and the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD).