有限矩阵2-范数rnn的GC性质研究

C. Qiao, Rui Zhang, Jing Yao, Xiangliang Kong, Changsheng Zhou
{"title":"有限矩阵2-范数rnn的GC性质研究","authors":"C. Qiao, Rui Zhang, Jing Yao, Xiangliang Kong, Changsheng Zhou","doi":"10.1109/GCIS.2013.19","DOIUrl":null,"url":null,"abstract":"The global convergence (GC) analysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, when the connecting matrix of the RNNs with projection mapping owning limited norm, the GC property is assured under the critical condition. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Research on the GC Property for RNNs with Limited Matrix 2-Norm\",\"authors\":\"C. Qiao, Rui Zhang, Jing Yao, Xiangliang Kong, Changsheng Zhou\",\"doi\":\"10.1109/GCIS.2013.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global convergence (GC) analysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, when the connecting matrix of the RNNs with projection mapping owning limited norm, the GC property is assured under the critical condition. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly.\",\"PeriodicalId\":366262,\"journal\":{\"name\":\"2013 Fourth Global Congress on Intelligent Systems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2013.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

递归神经网络的全局收敛性分析是递归神经网络实际应用的第一步和必要步骤。当具有投影映射的rnn的连接矩阵具有有限范数时,在临界条件下保证了GC性质。本文的研究结果不仅对文献中已有的临界和非临界动力学的相关结论进行了深入的改进,而且可以直接用于rnn的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Research on the GC Property for RNNs with Limited Matrix 2-Norm
The global convergence (GC) analysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, when the connecting matrix of the RNNs with projection mapping owning limited norm, the GC property is assured under the critical condition. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信