Jimbo-Sakai族q-差分方程的单数据空间

Y. Ohyama, J. Ramis, J. Sauloy
{"title":"Jimbo-Sakai族q-差分方程的单数据空间","authors":"Y. Ohyama, J. Ramis, J. Sauloy","doi":"10.5802/AFST.1659","DOIUrl":null,"url":null,"abstract":"We formulate a geometric Riemann-Hilbert correspondence that applies to the derivation by Jimbo and Sakai of equation $q$-PVI from ``isomonodromy'' conditions. This is a step within work in progress towards the application of $q$-isomonodromy and $q$-isoStokes to $q$-Painleve.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"12 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The space of monodromy data for the Jimbo–Sakai family of q-difference equations\",\"authors\":\"Y. Ohyama, J. Ramis, J. Sauloy\",\"doi\":\"10.5802/AFST.1659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate a geometric Riemann-Hilbert correspondence that applies to the derivation by Jimbo and Sakai of equation $q$-PVI from ``isomonodromy'' conditions. This is a step within work in progress towards the application of $q$-isomonodromy and $q$-isoStokes to $q$-Painleve.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"12 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/AFST.1659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/AFST.1659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们构造了一个几何Riemann-Hilbert对应关系,该对应关系适用于Jimbo和Sakai在“同构”条件下推导方程$q$-PVI。这是将$q$-异构和$q$-isoStokes应用于$q$-Painleve的一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of monodromy data for the Jimbo–Sakai family of q-difference equations
We formulate a geometric Riemann-Hilbert correspondence that applies to the derivation by Jimbo and Sakai of equation $q$-PVI from ``isomonodromy'' conditions. This is a step within work in progress towards the application of $q$-isomonodromy and $q$-isoStokes to $q$-Painleve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信