{"title":"通过对称秩一更新计算矩阵的Moore-Penrose逆","authors":"Xuzhou Chen, J. Ji","doi":"10.4236/ajcm.2011.13016","DOIUrl":null,"url":null,"abstract":"This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with lower computational complexity is also proposed. Both algorithms are tested on randomly generated matrices. Numerical performance confirms our theoretic results.","PeriodicalId":359476,"journal":{"name":"Am. J. Comput. Math.","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Computing the Moore-Penrose Inverse of a Matrix Through Symmetric Rank-One Updates\",\"authors\":\"Xuzhou Chen, J. Ji\",\"doi\":\"10.4236/ajcm.2011.13016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with lower computational complexity is also proposed. Both algorithms are tested on randomly generated matrices. Numerical performance confirms our theoretic results.\",\"PeriodicalId\":359476,\"journal\":{\"name\":\"Am. J. Comput. Math.\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Am. J. Comput. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2011.13016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Am. J. Comput. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajcm.2011.13016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing the Moore-Penrose Inverse of a Matrix Through Symmetric Rank-One Updates
This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with lower computational complexity is also proposed. Both algorithms are tested on randomly generated matrices. Numerical performance confirms our theoretic results.