K. Desnos, M. Pelcat, J. Nezan, S. Bhattacharyya, Slaheddine Aridhi
{"title":"用于mpsoc运行时重构的参数化和接口数据流元模型","authors":"K. Desnos, M. Pelcat, J. Nezan, S. Bhattacharyya, Slaheddine Aridhi","doi":"10.1109/SAMOS.2013.6621104","DOIUrl":null,"url":null,"abstract":"Dataflow models of computation are widely used for the specification, analysis, and optimization of Digital Signal Processing (DSP) applications. In this paper a new meta-model called PiMM is introduced to address the important challenge of managing dynamics in DSP-oriented representations. PiMM extends a dataflow model by introducing an explicit parameter dependency tree and an interface-based hierarchical compositionality mechanism. PiMM favors the design of highly-efficient heterogeneous multicore systems, specifying algorithms with customizable trade-offs among predictability and exploitation of both static and adaptive task, data and pipeline parallelism. PiMM fosters design space exploration and reconfigurable resource allocation in a flexible dynamic dataflow context.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"80 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration\",\"authors\":\"K. Desnos, M. Pelcat, J. Nezan, S. Bhattacharyya, Slaheddine Aridhi\",\"doi\":\"10.1109/SAMOS.2013.6621104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dataflow models of computation are widely used for the specification, analysis, and optimization of Digital Signal Processing (DSP) applications. In this paper a new meta-model called PiMM is introduced to address the important challenge of managing dynamics in DSP-oriented representations. PiMM extends a dataflow model by introducing an explicit parameter dependency tree and an interface-based hierarchical compositionality mechanism. PiMM favors the design of highly-efficient heterogeneous multicore systems, specifying algorithms with customizable trade-offs among predictability and exploitation of both static and adaptive task, data and pipeline parallelism. PiMM fosters design space exploration and reconfigurable resource allocation in a flexible dynamic dataflow context.\",\"PeriodicalId\":382307,\"journal\":{\"name\":\"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"80 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2013.6621104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration
Dataflow models of computation are widely used for the specification, analysis, and optimization of Digital Signal Processing (DSP) applications. In this paper a new meta-model called PiMM is introduced to address the important challenge of managing dynamics in DSP-oriented representations. PiMM extends a dataflow model by introducing an explicit parameter dependency tree and an interface-based hierarchical compositionality mechanism. PiMM favors the design of highly-efficient heterogeneous multicore systems, specifying algorithms with customizable trade-offs among predictability and exploitation of both static and adaptive task, data and pipeline parallelism. PiMM fosters design space exploration and reconfigurable resource allocation in a flexible dynamic dataflow context.