{"title":"支持向量回归的二维解路径","authors":"G. Wang, D. Yeung, F. Lochovsky","doi":"10.1145/1143844.1143969","DOIUrl":null,"url":null,"abstract":"Recently, a very appealing approach was proposed to compute the entire solution path for support vector classification (SVC) with very low extra computational cost. This approach was later extended to a support vector regression (SVR) model called ε-SVR. However, the method requires that the error parameter ε be set a priori, which is only possible if the desired accuracy of the approximation can be specified in advance. In this paper, we show that the solution path for ε-SVR is also piecewise linear with respect to ε. We further propose an efficient algorithm for exploring the two-dimensional solution space defined by the regularization and error parameters. As opposed to the algorithm for SVC, our proposed algorithm for ε-SVR initializes the number of support vectors to zero and then increases it gradually as the algorithm proceeds. As such, a good regression function possessing the sparseness property can be obtained after only a few iterations.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Two-dimensional solution path for support vector regression\",\"authors\":\"G. Wang, D. Yeung, F. Lochovsky\",\"doi\":\"10.1145/1143844.1143969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a very appealing approach was proposed to compute the entire solution path for support vector classification (SVC) with very low extra computational cost. This approach was later extended to a support vector regression (SVR) model called ε-SVR. However, the method requires that the error parameter ε be set a priori, which is only possible if the desired accuracy of the approximation can be specified in advance. In this paper, we show that the solution path for ε-SVR is also piecewise linear with respect to ε. We further propose an efficient algorithm for exploring the two-dimensional solution space defined by the regularization and error parameters. As opposed to the algorithm for SVC, our proposed algorithm for ε-SVR initializes the number of support vectors to zero and then increases it gradually as the algorithm proceeds. As such, a good regression function possessing the sparseness property can be obtained after only a few iterations.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional solution path for support vector regression
Recently, a very appealing approach was proposed to compute the entire solution path for support vector classification (SVC) with very low extra computational cost. This approach was later extended to a support vector regression (SVR) model called ε-SVR. However, the method requires that the error parameter ε be set a priori, which is only possible if the desired accuracy of the approximation can be specified in advance. In this paper, we show that the solution path for ε-SVR is also piecewise linear with respect to ε. We further propose an efficient algorithm for exploring the two-dimensional solution space defined by the regularization and error parameters. As opposed to the algorithm for SVC, our proposed algorithm for ε-SVR initializes the number of support vectors to zero and then increases it gradually as the algorithm proceeds. As such, a good regression function possessing the sparseness property can be obtained after only a few iterations.