稀有事件模拟中的有限相对效率

H. Cancela, G. Rubino, B. Tuffin
{"title":"稀有事件模拟中的有限相对效率","authors":"H. Cancela, G. Rubino, B. Tuffin","doi":"10.1109/SAINTW.2005.43","DOIUrl":null,"url":null,"abstract":"This paper investigates the robustness of rare event simulation estimators when rarity increases. The literature had up to now focused on bounded relative error (BRErr) or bounded normal approximation properties stating respectively that the relative size and the coverage error of the confidence interval are bounded whatever the rarity is. Using a reliability estimation problem, we show that there exists some efficient estimators for which BRErr is not verified. The efficiency is due to the fact that the number of estimations during a given simulation time increases with the rarity. We thus define a property called bounded relative efficiency ecompassing the examples of estimators verifying BRErr, and representing the actual property an analyst has to look at.","PeriodicalId":220913,"journal":{"name":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded Relative Efficiency in Rare Event Simulation\",\"authors\":\"H. Cancela, G. Rubino, B. Tuffin\",\"doi\":\"10.1109/SAINTW.2005.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the robustness of rare event simulation estimators when rarity increases. The literature had up to now focused on bounded relative error (BRErr) or bounded normal approximation properties stating respectively that the relative size and the coverage error of the confidence interval are bounded whatever the rarity is. Using a reliability estimation problem, we show that there exists some efficient estimators for which BRErr is not verified. The efficiency is due to the fact that the number of estimations during a given simulation time increases with the rarity. We thus define a property called bounded relative efficiency ecompassing the examples of estimators verifying BRErr, and representing the actual property an analyst has to look at.\",\"PeriodicalId\":220913,\"journal\":{\"name\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAINTW.2005.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2005.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了稀有事件模拟估计器在稀有度增加时的鲁棒性。到目前为止,文献主要集中在有界相对误差(BRErr)或有界正态近似性质上,分别说明无论稀有性如何,置信区间的相对大小和覆盖误差都是有界的。利用一个可靠性估计问题,我们证明了存在一些有效的估计量,其中BRErr没有得到验证。效率是由于在给定的模拟时间内,估计的数量随着稀缺性的增加而增加。因此,我们定义了一个称为有界相对效率的属性,它包含了验证BRErr的估计器的示例,并表示了分析人员必须查看的实际属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded Relative Efficiency in Rare Event Simulation
This paper investigates the robustness of rare event simulation estimators when rarity increases. The literature had up to now focused on bounded relative error (BRErr) or bounded normal approximation properties stating respectively that the relative size and the coverage error of the confidence interval are bounded whatever the rarity is. Using a reliability estimation problem, we show that there exists some efficient estimators for which BRErr is not verified. The efficiency is due to the fact that the number of estimations during a given simulation time increases with the rarity. We thus define a property called bounded relative efficiency ecompassing the examples of estimators verifying BRErr, and representing the actual property an analyst has to look at.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信