基于蚁群优化算法的资源约束项目调度问题求解

Yongbo Yuan, Kai Wang, Le Ding
{"title":"基于蚁群优化算法的资源约束项目调度问题求解","authors":"Yongbo Yuan, Kai Wang, Le Ding","doi":"10.1109/HIS.2009.92","DOIUrl":null,"url":null,"abstract":"Ant Colony Optimization (ACO) is a popular-based, artificial agent, general-search technique for the solution of difficult combinatorial problems. This paper presents a solution to the Resource-Constraint Project Scheduling Problem based on ACO algorithm. The method considers the quantified duration and resource as the heuristic information to calculate the accurate state transition probability and finally reaches the scheduling optimization. The described ACO algorithm is tested on a sample case taken from the literature and the parameters in ACO are determined by tests. The computational results validate the effectiveness of the proposed algorithm.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Solution to Resource-Constrained Project Scheduling Problem: Based on Ant Colony Optimization Algorithm\",\"authors\":\"Yongbo Yuan, Kai Wang, Le Ding\",\"doi\":\"10.1109/HIS.2009.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant Colony Optimization (ACO) is a popular-based, artificial agent, general-search technique for the solution of difficult combinatorial problems. This paper presents a solution to the Resource-Constraint Project Scheduling Problem based on ACO algorithm. The method considers the quantified duration and resource as the heuristic information to calculate the accurate state transition probability and finally reaches the scheduling optimization. The described ACO algorithm is tested on a sample case taken from the literature and the parameters in ACO are determined by tests. The computational results validate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蚁群优化是一种基于人工智能的通用搜索技术,用于求解复杂的组合问题。提出了一种基于蚁群算法的资源约束型项目调度问题的求解方法。该方法将量化的时间和资源作为启发式信息,计算出准确的状态转移概率,最终达到调度优化。本文通过一个实例对蚁群算法进行了测试,并通过测试确定了蚁群算法中的参数。计算结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Solution to Resource-Constrained Project Scheduling Problem: Based on Ant Colony Optimization Algorithm
Ant Colony Optimization (ACO) is a popular-based, artificial agent, general-search technique for the solution of difficult combinatorial problems. This paper presents a solution to the Resource-Constraint Project Scheduling Problem based on ACO algorithm. The method considers the quantified duration and resource as the heuristic information to calculate the accurate state transition probability and finally reaches the scheduling optimization. The described ACO algorithm is tested on a sample case taken from the literature and the parameters in ACO are determined by tests. The computational results validate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信