LDGM代码中的误差层分析

Kejing Liu, J. Garcia-Frías
{"title":"LDGM代码中的误差层分析","authors":"Kejing Liu, J. Garcia-Frías","doi":"10.1109/ISIT.2010.5513607","DOIUrl":null,"url":null,"abstract":"Based on discrete density evolution (DDE), we develop closed form expressions to predict the error floor of LDGM codes. The first, rougher, approximation is obtained by assuming perfect message passing between systematic and parity bit nodes in DDE. The second, finer, expression leads to a more involved formulation. While the rougher approximation matches well to simulation results and DDE analysis for high signal to noise ratio (additive white Gaussian noise, AWGN, channel) or low crossover probability (binary symmetric channel, BSC), the finer approximation shows a good match for a wider range in the channel quality.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Error floor analysis in LDGM codes\",\"authors\":\"Kejing Liu, J. Garcia-Frías\",\"doi\":\"10.1109/ISIT.2010.5513607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on discrete density evolution (DDE), we develop closed form expressions to predict the error floor of LDGM codes. The first, rougher, approximation is obtained by assuming perfect message passing between systematic and parity bit nodes in DDE. The second, finer, expression leads to a more involved formulation. While the rougher approximation matches well to simulation results and DDE analysis for high signal to noise ratio (additive white Gaussian noise, AWGN, channel) or low crossover probability (binary symmetric channel, BSC), the finer approximation shows a good match for a wider range in the channel quality.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在离散密度演化(DDE)的基础上,建立了预测LDGM码误差层的封闭表达式。通过假设DDE中系统位节点和奇偶校验位节点之间的完美消息传递,可以获得第一个更粗略的近似。第二种更精细的表达导致了更复杂的表述。对于高信噪比(加性高斯白噪声,AWGN,信道)或低交叉概率(二进制对称信道,BSC),粗糙近似与仿真结果和DDE分析匹配良好,而精细近似在更宽的信道质量范围内表现出良好的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error floor analysis in LDGM codes
Based on discrete density evolution (DDE), we develop closed form expressions to predict the error floor of LDGM codes. The first, rougher, approximation is obtained by assuming perfect message passing between systematic and parity bit nodes in DDE. The second, finer, expression leads to a more involved formulation. While the rougher approximation matches well to simulation results and DDE analysis for high signal to noise ratio (additive white Gaussian noise, AWGN, channel) or low crossover probability (binary symmetric channel, BSC), the finer approximation shows a good match for a wider range in the channel quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信