Jung-Chao Ban, Chih-Hung Chang, Song-Sun Lin, Yin-Heng Lin
{"title":"多层细胞神经网络的空间复杂性","authors":"Jung-Chao Ban, Chih-Hung Chang, Song-Sun Lin, Yin-Heng Lin","doi":"10.1109/CNNA.2010.5430257","DOIUrl":null,"url":null,"abstract":"This study investigates the complexity of the global set of output patterns for one-dimensional multi-layer cellular neural networks with input. Applying labeling to the output space produces a sofic shift space. Two invariants, namely spatial entropy and dynamical zeta function, can be exactly computed by studying the induced sofic shift space. This study gives sofic shift a realization through a realistic model. Furthermore, a new phenomenon, the broken of symmetry of entropy, is discovered in multi-layer cellular neural networks with input.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Spatial complexity in multi-layer cellular neural networks\",\"authors\":\"Jung-Chao Ban, Chih-Hung Chang, Song-Sun Lin, Yin-Heng Lin\",\"doi\":\"10.1109/CNNA.2010.5430257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the complexity of the global set of output patterns for one-dimensional multi-layer cellular neural networks with input. Applying labeling to the output space produces a sofic shift space. Two invariants, namely spatial entropy and dynamical zeta function, can be exactly computed by studying the induced sofic shift space. This study gives sofic shift a realization through a realistic model. Furthermore, a new phenomenon, the broken of symmetry of entropy, is discovered in multi-layer cellular neural networks with input.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial complexity in multi-layer cellular neural networks
This study investigates the complexity of the global set of output patterns for one-dimensional multi-layer cellular neural networks with input. Applying labeling to the output space produces a sofic shift space. Two invariants, namely spatial entropy and dynamical zeta function, can be exactly computed by studying the induced sofic shift space. This study gives sofic shift a realization through a realistic model. Furthermore, a new phenomenon, the broken of symmetry of entropy, is discovered in multi-layer cellular neural networks with input.