增强自适应同步摄动算法的有效实现

Pushpendre Rastogi, Jingyi Zhu, J. Spall
{"title":"增强自适应同步摄动算法的有效实现","authors":"Pushpendre Rastogi, Jingyi Zhu, J. Spall","doi":"10.1109/CISS.2016.7460518","DOIUrl":null,"url":null,"abstract":"Stochastic approximation (SA) applies in both the gradient-free optimization (Kiefer-Wolfowitz) and the gradient-based setting (Robbins-Monro). The idea of simultaneous perturbation (SP) has been well established. This paper discusses an efficient way of implementing both the adaptive Newton-like SP algorithms and their enhancements (feedback and optimal weighting incorporated), using the Woodbury matrix identity, a.k.a. matrix inversion lemma. Basically, instead of estimating the Hessian matrix directly, this paper deals with the estimation of the inverse of the Hessian matrix. Furthermore, the preconditioning steps, which are required in early iterations to maintain positive-definiteness of the Hessian estimates, are imposed on the Hessian inverse rather than the Hessian itself. Numerical results also demonstrate the superiority of this efficient implementation on Newton-like SP algorithms.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient implementation of enhanced adaptive simultaneous perturbation algorithms\",\"authors\":\"Pushpendre Rastogi, Jingyi Zhu, J. Spall\",\"doi\":\"10.1109/CISS.2016.7460518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic approximation (SA) applies in both the gradient-free optimization (Kiefer-Wolfowitz) and the gradient-based setting (Robbins-Monro). The idea of simultaneous perturbation (SP) has been well established. This paper discusses an efficient way of implementing both the adaptive Newton-like SP algorithms and their enhancements (feedback and optimal weighting incorporated), using the Woodbury matrix identity, a.k.a. matrix inversion lemma. Basically, instead of estimating the Hessian matrix directly, this paper deals with the estimation of the inverse of the Hessian matrix. Furthermore, the preconditioning steps, which are required in early iterations to maintain positive-definiteness of the Hessian estimates, are imposed on the Hessian inverse rather than the Hessian itself. Numerical results also demonstrate the superiority of this efficient implementation on Newton-like SP algorithms.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随机逼近(SA)既适用于无梯度优化(Kiefer-Wolfowitz),也适用于基于梯度的设置(Robbins-Monro)。同时摄动(SP)的概念已经得到了很好的证实。本文讨论了一种实现自适应类牛顿SP算法及其增强(反馈和最优加权合并)的有效方法,使用Woodbury矩阵恒等式,又称矩阵反演引理。基本上,本文不是直接估计Hessian矩阵,而是处理Hessian矩阵逆的估计。此外,在早期迭代中需要保持Hessian估计的正确定性的预处理步骤被强加于Hessian逆而不是Hessian本身。数值结果也证明了这种高效实现在类牛顿SP算法上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient implementation of enhanced adaptive simultaneous perturbation algorithms
Stochastic approximation (SA) applies in both the gradient-free optimization (Kiefer-Wolfowitz) and the gradient-based setting (Robbins-Monro). The idea of simultaneous perturbation (SP) has been well established. This paper discusses an efficient way of implementing both the adaptive Newton-like SP algorithms and their enhancements (feedback and optimal weighting incorporated), using the Woodbury matrix identity, a.k.a. matrix inversion lemma. Basically, instead of estimating the Hessian matrix directly, this paper deals with the estimation of the inverse of the Hessian matrix. Furthermore, the preconditioning steps, which are required in early iterations to maintain positive-definiteness of the Hessian estimates, are imposed on the Hessian inverse rather than the Hessian itself. Numerical results also demonstrate the superiority of this efficient implementation on Newton-like SP algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信