通过随机抽样在产品线中找到接近最优的配置

Jeho Oh, D. Batory, Margaret Myers, Norbert Siegmund
{"title":"通过随机抽样在产品线中找到接近最优的配置","authors":"Jeho Oh, D. Batory, Margaret Myers, Norbert Siegmund","doi":"10.1145/3106237.3106273","DOIUrl":null,"url":null,"abstract":"Software Product Lines (SPLs) are highly configurable systems. This raises the challenge to find optimal performing configurations for an anticipated workload. As SPL configuration spaces are huge, it is infeasible to benchmark all configurations to find an optimal one. Prior work focused on building performance models to predict and optimize SPL configurations. Instead, we randomly sample and recursively search a configuration space directly to find near-optimal configurations without constructing a prediction model. Our algorithms are simpler and have higher accuracy and efficiency.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Finding near-optimal configurations in product lines by random sampling\",\"authors\":\"Jeho Oh, D. Batory, Margaret Myers, Norbert Siegmund\",\"doi\":\"10.1145/3106237.3106273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Product Lines (SPLs) are highly configurable systems. This raises the challenge to find optimal performing configurations for an anticipated workload. As SPL configuration spaces are huge, it is infeasible to benchmark all configurations to find an optimal one. Prior work focused on building performance models to predict and optimize SPL configurations. Instead, we randomly sample and recursively search a configuration space directly to find near-optimal configurations without constructing a prediction model. Our algorithms are simpler and have higher accuracy and efficiency.\",\"PeriodicalId\":313494,\"journal\":{\"name\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106237.3106273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3106273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

摘要

软件产品线(SPLs)是高度可配置的系统。这就提出了为预期工作负载找到最佳性能配置的挑战。由于SPL配置空间很大,对所有配置进行基准测试以找到最优配置是不可行的。先前的工作集中在建立性能模型来预测和优化SPL配置。相反,我们直接对配置空间进行随机抽样和递归搜索,以找到接近最优的配置,而无需构建预测模型。我们的算法更简单,具有更高的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding near-optimal configurations in product lines by random sampling
Software Product Lines (SPLs) are highly configurable systems. This raises the challenge to find optimal performing configurations for an anticipated workload. As SPL configuration spaces are huge, it is infeasible to benchmark all configurations to find an optimal one. Prior work focused on building performance models to predict and optimize SPL configurations. Instead, we randomly sample and recursively search a configuration space directly to find near-optimal configurations without constructing a prediction model. Our algorithms are simpler and have higher accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信