{"title":"自动驾驶汽车变道机动(基准方案)","authors":"Nikolaos Kekatos, Daniel Hess, Goran Frehse","doi":"10.29007/5hxt","DOIUrl":null,"url":null,"abstract":"Lane changes are known to be risky maneuvers both for autonomous vehicles and human drivers since they require changes in longitudinal and lateral velocities in the presence of other moving vehicles. In this paper, we propose a benchmark modeling a cooperative lane change maneuver that involves four fully autonomous vehicles; three in the left lane and one in the right. The vehicle driving in the right lane aims to move to the left lane while avoiding a collision with the other vehicles. Each vehicle is equipped with sensors and can also communicate with its neighboring vehicles. The vehicle dynamics are described by a dynamic bicycle model and each vehicle is equipped with a linear low-level controller that regulates its own longitudinal and lateral behavior. To guarantee that the maneuver is safe and the traffic rules are enforced, we employ a cooperative driving control scheme (in the spirit of supervisory logic) that decides the actions of each vehicle.","PeriodicalId":236469,"journal":{"name":"ARCH@ADHS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lane change maneuver for autonomous vehicles (Benchmark Proposal)\",\"authors\":\"Nikolaos Kekatos, Daniel Hess, Goran Frehse\",\"doi\":\"10.29007/5hxt\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lane changes are known to be risky maneuvers both for autonomous vehicles and human drivers since they require changes in longitudinal and lateral velocities in the presence of other moving vehicles. In this paper, we propose a benchmark modeling a cooperative lane change maneuver that involves four fully autonomous vehicles; three in the left lane and one in the right. The vehicle driving in the right lane aims to move to the left lane while avoiding a collision with the other vehicles. Each vehicle is equipped with sensors and can also communicate with its neighboring vehicles. The vehicle dynamics are described by a dynamic bicycle model and each vehicle is equipped with a linear low-level controller that regulates its own longitudinal and lateral behavior. To guarantee that the maneuver is safe and the traffic rules are enforced, we employ a cooperative driving control scheme (in the spirit of supervisory logic) that decides the actions of each vehicle.\",\"PeriodicalId\":236469,\"journal\":{\"name\":\"ARCH@ADHS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARCH@ADHS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/5hxt\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARCH@ADHS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/5hxt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lane change maneuver for autonomous vehicles (Benchmark Proposal)
Lane changes are known to be risky maneuvers both for autonomous vehicles and human drivers since they require changes in longitudinal and lateral velocities in the presence of other moving vehicles. In this paper, we propose a benchmark modeling a cooperative lane change maneuver that involves four fully autonomous vehicles; three in the left lane and one in the right. The vehicle driving in the right lane aims to move to the left lane while avoiding a collision with the other vehicles. Each vehicle is equipped with sensors and can also communicate with its neighboring vehicles. The vehicle dynamics are described by a dynamic bicycle model and each vehicle is equipped with a linear low-level controller that regulates its own longitudinal and lateral behavior. To guarantee that the maneuver is safe and the traffic rules are enforced, we employ a cooperative driving control scheme (in the spirit of supervisory logic) that decides the actions of each vehicle.