为维基数据实体生成可解释的抽象

Nicholas Klein, F. Ilievski, Pedro A. Szekely
{"title":"为维基数据实体生成可解释的抽象","authors":"Nicholas Klein, F. Ilievski, Pedro A. Szekely","doi":"10.1145/3460210.3493580","DOIUrl":null,"url":null,"abstract":"The large coverage and quality of the Wikidata knowledge graph make it suitable for usage in downstream applications, such as entity summarization, entity linking, and question answering. Yet, most retrieval and similarity-based methods for Wikidata make limited use of its semantics, and lose the link between the rich structure in Wikidata and the decision-making algorithm. In this paper, we investigate how to define abstractive representations (profiles) of Wikidata entities. We propose a scalable method that can produce profiles for Wikidata entities based on salient labels associated with their types. We represent the resulting profiles as a graph, and compute profile embeddings. Our empirical analysis shows that the profiles can capture similarity competitively to baselines, but excel in terms of explainability. On the task of neural entity linking in tables, the profiles outperform all baselines in terms of accuracy, whereas their human-readable representation clearly explains the source of improvement. We make our code and data available to facilitate novel use cases based on the Wikidata profiles.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generating Explainable Abstractions for Wikidata Entities\",\"authors\":\"Nicholas Klein, F. Ilievski, Pedro A. Szekely\",\"doi\":\"10.1145/3460210.3493580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large coverage and quality of the Wikidata knowledge graph make it suitable for usage in downstream applications, such as entity summarization, entity linking, and question answering. Yet, most retrieval and similarity-based methods for Wikidata make limited use of its semantics, and lose the link between the rich structure in Wikidata and the decision-making algorithm. In this paper, we investigate how to define abstractive representations (profiles) of Wikidata entities. We propose a scalable method that can produce profiles for Wikidata entities based on salient labels associated with their types. We represent the resulting profiles as a graph, and compute profile embeddings. Our empirical analysis shows that the profiles can capture similarity competitively to baselines, but excel in terms of explainability. On the task of neural entity linking in tables, the profiles outperform all baselines in terms of accuracy, whereas their human-readable representation clearly explains the source of improvement. We make our code and data available to facilitate novel use cases based on the Wikidata profiles.\",\"PeriodicalId\":377331,\"journal\":{\"name\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460210.3493580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Wikidata知识图的大覆盖和高质量使其适合用于下游应用程序,例如实体摘要、实体链接和问题回答。然而,大多数基于相似度的维基数据检索方法对其语义的利用有限,失去了维基数据丰富结构与决策算法之间的联系。在本文中,我们研究了如何定义维基数据实体的抽象表示(概要)。我们提出了一种可扩展的方法,可以根据与其类型相关的显著标签为维基数据实体生成概要文件。我们将得到的概要文件表示为一个图,并计算概要文件嵌入。我们的实证分析表明,这些配置文件可以捕获与基线竞争的相似性,但在可解释性方面表现出色。在表中的神经实体链接任务上,概要文件在准确性方面优于所有基线,而它们的人类可读表示清楚地解释了改进的来源。我们使我们的代码和数据可用,以促进基于Wikidata概要文件的新用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Explainable Abstractions for Wikidata Entities
The large coverage and quality of the Wikidata knowledge graph make it suitable for usage in downstream applications, such as entity summarization, entity linking, and question answering. Yet, most retrieval and similarity-based methods for Wikidata make limited use of its semantics, and lose the link between the rich structure in Wikidata and the decision-making algorithm. In this paper, we investigate how to define abstractive representations (profiles) of Wikidata entities. We propose a scalable method that can produce profiles for Wikidata entities based on salient labels associated with their types. We represent the resulting profiles as a graph, and compute profile embeddings. Our empirical analysis shows that the profiles can capture similarity competitively to baselines, but excel in terms of explainability. On the task of neural entity linking in tables, the profiles outperform all baselines in terms of accuracy, whereas their human-readable representation clearly explains the source of improvement. We make our code and data available to facilitate novel use cases based on the Wikidata profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信