超大型集装箱船(ULCS)水平与扭转模态分析

P. Vijith, S. Rajendran
{"title":"超大型集装箱船(ULCS)水平与扭转模态分析","authors":"P. Vijith, S. Rajendran","doi":"10.1115/omae2020-18659","DOIUrl":null,"url":null,"abstract":"\n The hydro elastic responses of flexible structures under fluid loading is an important concern during the design of large ocean structures. The two-way coupling between the structural responses and the hydrodynamic loads is a complex problem in large flexible floating structures since the structures can vibrate in longitudinal, vertical, horizontal, or torsional modes. The antisymmetric distortion modes may be coupled depending on the location of the centroid and the shear centre. In the case of thin walled open structures, horizontal and torsional vibrations are usually coupled due to the asymmetry of cross section as well as eccentricity between centroid of the section and shear deformation centres. The acurate estimation of dry natural frequency and modes shapes of structure is indispensable since it helps to validate the accuracy of the structural modelling. A numerical method available from one of the existing literatures is used for the estimation of dry and wet natural frequencies, and mode shapes of horizontal and torsional vibrations of an ULCS. The natural frequency and modes are essential parameters for the analysis of interaction between structural responses and hydrodynamic loads. The numerical method is based on a 1D FEM beam model. Distortion due to warping is included in the numerical model since it is well known that containerships with large hatch opening are susceptible to warping. The numerical model is subdivided into 50 stations and the mass distribution and the sectional properties are calculated in order to match the bending, shear, torsion and warping moduli of the experimental model.\n The dry and wet natural frequency and mode shapes for the horizontal and torsional vibrations of the ULCS is numerically calculated and compared with the experimental results.","PeriodicalId":431910,"journal":{"name":"Volume 6B: Ocean Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal and Torsional Modes of an Ultra Large Container Ship (ULCS)\",\"authors\":\"P. Vijith, S. Rajendran\",\"doi\":\"10.1115/omae2020-18659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The hydro elastic responses of flexible structures under fluid loading is an important concern during the design of large ocean structures. The two-way coupling between the structural responses and the hydrodynamic loads is a complex problem in large flexible floating structures since the structures can vibrate in longitudinal, vertical, horizontal, or torsional modes. The antisymmetric distortion modes may be coupled depending on the location of the centroid and the shear centre. In the case of thin walled open structures, horizontal and torsional vibrations are usually coupled due to the asymmetry of cross section as well as eccentricity between centroid of the section and shear deformation centres. The acurate estimation of dry natural frequency and modes shapes of structure is indispensable since it helps to validate the accuracy of the structural modelling. A numerical method available from one of the existing literatures is used for the estimation of dry and wet natural frequencies, and mode shapes of horizontal and torsional vibrations of an ULCS. The natural frequency and modes are essential parameters for the analysis of interaction between structural responses and hydrodynamic loads. The numerical method is based on a 1D FEM beam model. Distortion due to warping is included in the numerical model since it is well known that containerships with large hatch opening are susceptible to warping. The numerical model is subdivided into 50 stations and the mass distribution and the sectional properties are calculated in order to match the bending, shear, torsion and warping moduli of the experimental model.\\n The dry and wet natural frequency and mode shapes for the horizontal and torsional vibrations of the ULCS is numerically calculated and compared with the experimental results.\",\"PeriodicalId\":431910,\"journal\":{\"name\":\"Volume 6B: Ocean Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

柔性结构在流体荷载作用下的水弹性响应是大型海洋结构设计中的一个重要问题。由于大型柔性浮式结构的纵向、竖向、水平或扭转振动,结构响应与水动力载荷之间的双向耦合是一个复杂的问题。根据质心和剪切中心的位置,反对称变形模态可以耦合。在薄壁开放结构中,由于截面的不对称以及截面质心与剪切变形中心之间的偏心,水平振动和扭转振动通常是耦合的。结构干固有频率和模态振型的准确估计是验证结构建模精度的必要条件。利用已有文献中的一种数值方法,估计了ULCS的干、湿固有频率以及水平和扭转振动的模态振型。固有频率和振型是分析结构响应与水动力相互作用的重要参数。数值方法基于一维有限元梁模型。由于众所周知,具有大舱口开口的集装箱船易受翘曲影响,因此数值模型中包含了翘曲引起的变形。为了匹配实验模型的弯曲、剪切、扭转和翘曲模量,将数值模型细分为50个站点,计算了质量分布和截面特性。数值计算了ULCS水平振动和扭转振动的干、湿固有频率和振型,并与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Horizontal and Torsional Modes of an Ultra Large Container Ship (ULCS)
The hydro elastic responses of flexible structures under fluid loading is an important concern during the design of large ocean structures. The two-way coupling between the structural responses and the hydrodynamic loads is a complex problem in large flexible floating structures since the structures can vibrate in longitudinal, vertical, horizontal, or torsional modes. The antisymmetric distortion modes may be coupled depending on the location of the centroid and the shear centre. In the case of thin walled open structures, horizontal and torsional vibrations are usually coupled due to the asymmetry of cross section as well as eccentricity between centroid of the section and shear deformation centres. The acurate estimation of dry natural frequency and modes shapes of structure is indispensable since it helps to validate the accuracy of the structural modelling. A numerical method available from one of the existing literatures is used for the estimation of dry and wet natural frequencies, and mode shapes of horizontal and torsional vibrations of an ULCS. The natural frequency and modes are essential parameters for the analysis of interaction between structural responses and hydrodynamic loads. The numerical method is based on a 1D FEM beam model. Distortion due to warping is included in the numerical model since it is well known that containerships with large hatch opening are susceptible to warping. The numerical model is subdivided into 50 stations and the mass distribution and the sectional properties are calculated in order to match the bending, shear, torsion and warping moduli of the experimental model. The dry and wet natural frequency and mode shapes for the horizontal and torsional vibrations of the ULCS is numerically calculated and compared with the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信