任意阶时域有限差分法的数值色散缩减方案

Guangzhi Chen, Shunchuan Yang, Shuo Cui, D. Su
{"title":"任意阶时域有限差分法的数值色散缩减方案","authors":"Guangzhi Chen, Shunchuan Yang, Shuo Cui, D. Su","doi":"10.23919/ACES48530.2019.9060675","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach to reduce the numerical dispersion error of the arbitrary order finite-difference time-domain (FDTD) method in the desired high frequency region. By interpolation of numerical dispersion relation in one-dimensional (1D) and two-dimensional (2D) cases, the numerical disperion error can be significantly reduced for a specific bandwidth especially in the case of high frequency. Two numerical experiments are presented to validate the accuracy of the proposed method.","PeriodicalId":247909,"journal":{"name":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Dispersion Reduction Scheme for Arbitrary Order FDTD Method\",\"authors\":\"Guangzhi Chen, Shunchuan Yang, Shuo Cui, D. Su\",\"doi\":\"10.23919/ACES48530.2019.9060675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approach to reduce the numerical dispersion error of the arbitrary order finite-difference time-domain (FDTD) method in the desired high frequency region. By interpolation of numerical dispersion relation in one-dimensional (1D) and two-dimensional (2D) cases, the numerical disperion error can be significantly reduced for a specific bandwidth especially in the case of high frequency. Two numerical experiments are presented to validate the accuracy of the proposed method.\",\"PeriodicalId\":247909,\"journal\":{\"name\":\"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACES48530.2019.9060675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACES48530.2019.9060675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种减小任意阶时域有限差分法(FDTD)在期望的高频区域内的数值色散误差的新方法。通过对一维(1D)和二维(2D)情况下的数值色散关系进行插值,可以显著减小特定带宽下的数值色散误差,特别是在高频情况下。通过两个数值实验验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Dispersion Reduction Scheme for Arbitrary Order FDTD Method
In this paper, we present a new approach to reduce the numerical dispersion error of the arbitrary order finite-difference time-domain (FDTD) method in the desired high frequency region. By interpolation of numerical dispersion relation in one-dimensional (1D) and two-dimensional (2D) cases, the numerical disperion error can be significantly reduced for a specific bandwidth especially in the case of high frequency. Two numerical experiments are presented to validate the accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信