投资组合选择的模型预测控制

Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering
{"title":"投资组合选择的模型预测控制","authors":"Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering","doi":"10.1109/ACC.2006.1656389","DOIUrl":null,"url":null,"abstract":"In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"394 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Model predictive control for portfolio selection\",\"authors\":\"Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering\",\"doi\":\"10.1109/ACC.2006.1656389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"394 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1656389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1656389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文阐述了模型预测控制(MPC)在动态组合优化问题中的应用。首先,我们证明了MPC是随机系统的次优控制策略,它能很好地利用新信息,因此优于纯最优开环控制。对于一个线性高斯因子模型,我们推导了财富动态和条件均值和方差。我们描述了投资组合优化,其中投资者在保持投资组合风险价值在给定限制下最大化均值方差目标。将组合优化方法应用于美国资产市场数据的案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictive control for portfolio selection
In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信