Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering
{"title":"投资组合选择的模型预测控制","authors":"Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering","doi":"10.1109/ACC.2006.1656389","DOIUrl":null,"url":null,"abstract":"In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"394 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Model predictive control for portfolio selection\",\"authors\":\"Florian Herzog, S. Keel, Gabriel Dondi, L. Schumann, H. Geering\",\"doi\":\"10.1109/ACC.2006.1656389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"394 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1656389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1656389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we explain the application of model predictive control (MPC) to problems of dynamic portfolio optimization. At first we prove that MPC is a suboptimal control strategy for stochastic systems which uses the new information advantageously and thus, is better than pure optimal open-loop control. For a linear Gaussian factor model, we derive the wealth dynamics and the conditional mean and variance. We state the portfolio optimization, where an investor maximizes the mean-variance objective while keeping the portfolio value-at-risk under a given limit. The portfolio optimization is applied in a case study to US asset market data