全实域的有限性

V. Kolyvagin, D. Y. Logachëv
{"title":"全实域的有限性","authors":"V. Kolyvagin, D. Y. Logachëv","doi":"10.1070/IM1992V039N01ABEH002228","DOIUrl":null,"url":null,"abstract":"Kolyvagin's method for the proof of the finiteness of is extended to abelian varieties with real multiplication, of -rank 0, defined over totally real fields, if they are factors of the Jacobians of Shimura curves. The finiteness of for such a variety is proved, starting from the conditions that a Heegner point on it is not a torsion point.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"FINITENESS OF OVER TOTALLY REAL FIELDS\",\"authors\":\"V. Kolyvagin, D. Y. Logachëv\",\"doi\":\"10.1070/IM1992V039N01ABEH002228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kolyvagin's method for the proof of the finiteness of is extended to abelian varieties with real multiplication, of -rank 0, defined over totally real fields, if they are factors of the Jacobians of Shimura curves. The finiteness of for such a variety is proved, starting from the conditions that a Heegner point on it is not a torsion point.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V039N01ABEH002228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N01ABEH002228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

将Kolyvagin证明有限的方法推广到定义在全实域上的-秩0实乘法的阿贝尔变,如果它们是Shimura曲线的雅可比矩阵的因子。从其上的Heegner点不是一个扭转点的条件出发,证明了其有限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FINITENESS OF OVER TOTALLY REAL FIELDS
Kolyvagin's method for the proof of the finiteness of is extended to abelian varieties with real multiplication, of -rank 0, defined over totally real fields, if they are factors of the Jacobians of Shimura curves. The finiteness of for such a variety is proved, starting from the conditions that a Heegner point on it is not a torsion point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信