{"title":"协同低功耗Mote/BLE嵌入式平台的系统设计","authors":"Michael P. Andersen, Gabe Fierro, D. Culler","doi":"10.1109/IPSN.2016.7460722","DOIUrl":null,"url":null,"abstract":"Modern IoT prototyping platforms fall short in terms of energy efficiency, connectivity and software programming practices. We present the design of a new hardware and software platform that addresses these shortcomings by bringing together Mobile, Wearable, Maker and Wireless Sensor Network technologies to enable rapid prototyping with a high degree of synergy and energy efficiency. This is achieved in part by leveraging the Memory Protection Unit on modern microcontrollers along with a novel syscall interface to provide kernel / user isolation and a clean concurrency model. Such a design allows a wide range of languages to be used for application development without significant adaptation. We demonstrate how careful choice of application language allows the naturally asynchronous nature of embedded programming to be expressed cleanly and powerfully. Finally we evaluate the platform in several integrated use cases, providing examples of the capabilities introduced by Synergy.","PeriodicalId":137855,"journal":{"name":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"System Design for a Synergistic, Low Power Mote/BLE Embedded Platform\",\"authors\":\"Michael P. Andersen, Gabe Fierro, D. Culler\",\"doi\":\"10.1109/IPSN.2016.7460722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern IoT prototyping platforms fall short in terms of energy efficiency, connectivity and software programming practices. We present the design of a new hardware and software platform that addresses these shortcomings by bringing together Mobile, Wearable, Maker and Wireless Sensor Network technologies to enable rapid prototyping with a high degree of synergy and energy efficiency. This is achieved in part by leveraging the Memory Protection Unit on modern microcontrollers along with a novel syscall interface to provide kernel / user isolation and a clean concurrency model. Such a design allows a wide range of languages to be used for application development without significant adaptation. We demonstrate how careful choice of application language allows the naturally asynchronous nature of embedded programming to be expressed cleanly and powerfully. Finally we evaluate the platform in several integrated use cases, providing examples of the capabilities introduced by Synergy.\",\"PeriodicalId\":137855,\"journal\":{\"name\":\"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2016.7460722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2016.7460722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System Design for a Synergistic, Low Power Mote/BLE Embedded Platform
Modern IoT prototyping platforms fall short in terms of energy efficiency, connectivity and software programming practices. We present the design of a new hardware and software platform that addresses these shortcomings by bringing together Mobile, Wearable, Maker and Wireless Sensor Network technologies to enable rapid prototyping with a high degree of synergy and energy efficiency. This is achieved in part by leveraging the Memory Protection Unit on modern microcontrollers along with a novel syscall interface to provide kernel / user isolation and a clean concurrency model. Such a design allows a wide range of languages to be used for application development without significant adaptation. We demonstrate how careful choice of application language allows the naturally asynchronous nature of embedded programming to be expressed cleanly and powerfully. Finally we evaluate the platform in several integrated use cases, providing examples of the capabilities introduced by Synergy.