{"title":"基于图的全景显著性预测全卷积网络","authors":"Yiwei Yang, Yucheng Zhu, Zhongpai Gao, Guangtao Zhai","doi":"10.1109/VCIP53242.2021.9675373","DOIUrl":null,"url":null,"abstract":"The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SalGFCN: Graph Based Fully Convolutional Network for Panoramic Saliency Prediction\",\"authors\":\"Yiwei Yang, Yucheng Zhu, Zhongpai Gao, Guangtao Zhai\",\"doi\":\"10.1109/VCIP53242.2021.9675373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"8 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SalGFCN: Graph Based Fully Convolutional Network for Panoramic Saliency Prediction
The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.