基于图的全景显著性预测全卷积网络

Yiwei Yang, Yucheng Zhu, Zhongpai Gao, Guangtao Zhai
{"title":"基于图的全景显著性预测全卷积网络","authors":"Yiwei Yang, Yucheng Zhu, Zhongpai Gao, Guangtao Zhai","doi":"10.1109/VCIP53242.2021.9675373","DOIUrl":null,"url":null,"abstract":"The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SalGFCN: Graph Based Fully Convolutional Network for Panoramic Saliency Prediction\",\"authors\":\"Yiwei Yang, Yucheng Zhu, Zhongpai Gao, Guangtao Zhai\",\"doi\":\"10.1109/VCIP53242.2021.9675373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"8 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非欧几里得几何特性引起的畸变对全景图像的显著性预测有很大影响。传统的基于CNN的二维图像显著性预测算法已经不适用于360度图像。直观地,我们提出了一个基于图的全卷积网络,用于360度图像的显著性预测,该网络可以合理地将全景像素映射到球面图数据结构进行表示。该显著性预测网络基于残差U-Net架构,在瓶颈处加入了扩展图卷积和注意机制。此外,我们设计了一个全卷积层,用于球面图空间中的图池化和解池操作,以保留节点到节点的特征。实验结果表明,我们提出的方法在大规模数据集上优于其他最先进的显著性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SalGFCN: Graph Based Fully Convolutional Network for Panoramic Saliency Prediction
The saliency prediction of panoramic images is dramatically affected by the distortion caused by non-Euclidean geometry characteristic. Traditional CNN based saliency pre-diction algorithms for 2D images are no longer suitable for 360-degree images. Intuitively, we propose a graph based fully convolutional network for saliency prediction of 360-degree images, which can reasonably map panoramic pixels to spherical graph data structures for representation. The saliency prediction network is based on residual U-Net architecture, with dilated graph convolutions and attention mechanism in the bottleneck. Furthermore, we design a fully convolutional layer for graph pooling and unpooling operations in spherical graph space to retain node-to-node features. Experimental results show that our proposed method outperforms other state-of-the-art saliency models on the large-scale dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信