基于情态特征的大规模预训练编码器在多情态情感分析中的应用

Atsushi Ando, Ryo Masumura, Akihiko Takashima, Satoshi Suzuki, Naoki Makishima, Keita Suzuki, Takafumi Moriya, Takanori Ashihara, Hiroshi Sato
{"title":"基于情态特征的大规模预训练编码器在多情态情感分析中的应用","authors":"Atsushi Ando, Ryo Masumura, Akihiko Takashima, Satoshi Suzuki, Naoki Makishima, Keita Suzuki, Takafumi Moriya, Takanori Ashihara, Hiroshi Sato","doi":"10.1109/SLT54892.2023.10022548","DOIUrl":null,"url":null,"abstract":"This paper investigates the effectiveness and implementation of modality-specific large-scale pre-trained encoders for multimodal sentiment analysis (MSA). Although the effectiveness of pre-trained encoders in various fields has been reported, conventional MSA methods employ them for only linguistic modality, and their application has not been investigated. This paper compares the features yielded by large-scale pre-trained encoders with conventional heuristic features. One each of the largest pre-trained encoders publicly available for each modality are used; CLIP-ViT, WavLM, and BERT for visual, acoustic, and linguistic modalities, respectively. Experiments on two datasets reveal that methods with domain-specific pre-trained encoders attain better performance than those with conventional features in both unimodal and multimodal scenarios. We also find it better to use the outputs of the intermediate layers of the encoders than those of the output layer. The codes are available at https://github.com/ando-hub/MSA_Pretrain.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"71 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Use of Modality-Specific Large-Scale Pre-Trained Encoders for Multimodal Sentiment Analysis\",\"authors\":\"Atsushi Ando, Ryo Masumura, Akihiko Takashima, Satoshi Suzuki, Naoki Makishima, Keita Suzuki, Takafumi Moriya, Takanori Ashihara, Hiroshi Sato\",\"doi\":\"10.1109/SLT54892.2023.10022548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effectiveness and implementation of modality-specific large-scale pre-trained encoders for multimodal sentiment analysis (MSA). Although the effectiveness of pre-trained encoders in various fields has been reported, conventional MSA methods employ them for only linguistic modality, and their application has not been investigated. This paper compares the features yielded by large-scale pre-trained encoders with conventional heuristic features. One each of the largest pre-trained encoders publicly available for each modality are used; CLIP-ViT, WavLM, and BERT for visual, acoustic, and linguistic modalities, respectively. Experiments on two datasets reveal that methods with domain-specific pre-trained encoders attain better performance than those with conventional features in both unimodal and multimodal scenarios. We also find it better to use the outputs of the intermediate layers of the encoders than those of the output layer. The codes are available at https://github.com/ando-hub/MSA_Pretrain.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"71 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10022548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了多模态情感分析(MSA)中基于模态的大规模预训练编码器的有效性和实现。虽然预训练编码器在各个领域的有效性已被报道,但传统的MSA方法仅将它们用于语言模态,并且尚未对其应用进行研究。本文将大规模预训练编码器生成的特征与常规启发式特征进行了比较。每一个最大的预训练编码器为每个模态使用公开可用;视觉CLIP-ViT WavLM,伯特,声学,分别和语言形式。在两个数据集上的实验表明,在单模态和多模态场景下,具有特定领域预训练编码器的方法都比具有常规特征的方法具有更好的性能。我们还发现使用编码器中间层的输出比使用输出层的输出更好。代码可在https://github.com/ando-hub/MSA_Pretrain上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of Modality-Specific Large-Scale Pre-Trained Encoders for Multimodal Sentiment Analysis
This paper investigates the effectiveness and implementation of modality-specific large-scale pre-trained encoders for multimodal sentiment analysis (MSA). Although the effectiveness of pre-trained encoders in various fields has been reported, conventional MSA methods employ them for only linguistic modality, and their application has not been investigated. This paper compares the features yielded by large-scale pre-trained encoders with conventional heuristic features. One each of the largest pre-trained encoders publicly available for each modality are used; CLIP-ViT, WavLM, and BERT for visual, acoustic, and linguistic modalities, respectively. Experiments on two datasets reveal that methods with domain-specific pre-trained encoders attain better performance than those with conventional features in both unimodal and multimodal scenarios. We also find it better to use the outputs of the intermediate layers of the encoders than those of the output layer. The codes are available at https://github.com/ando-hub/MSA_Pretrain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信