复杂金属表面缺陷分割的合成数据

Juraj Fulir, Lovro Bosnar, H. Hagen, Petra Gospodnetić
{"title":"复杂金属表面缺陷分割的合成数据","authors":"Juraj Fulir, Lovro Bosnar, H. Hagen, Petra Gospodnetić","doi":"10.1109/CVPRW59228.2023.00465","DOIUrl":null,"url":null,"abstract":"Metal defect segmentation poses a great challenge for automated inspection systems due to the complex light reflection from the surface and lack of training data. In this work we introduce a real and synthetic defect segmentation dataset pair for multi-view inspection of a metal clutch part to overcome data shortage. Model pre-training on our synthetic dataset was compared to similar inspection datasets in the literature. Two techniques are presented to increase model training efficiency and prediction coverage in darker areas of the image. Results were collected over three popular segmentation architectures to confirm superior effectiveness of synthetic data and unveil various challenges of multi-view inspection.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"139 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthetic Data for Defect Segmentation on Complex Metal Surfaces\",\"authors\":\"Juraj Fulir, Lovro Bosnar, H. Hagen, Petra Gospodnetić\",\"doi\":\"10.1109/CVPRW59228.2023.00465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal defect segmentation poses a great challenge for automated inspection systems due to the complex light reflection from the surface and lack of training data. In this work we introduce a real and synthetic defect segmentation dataset pair for multi-view inspection of a metal clutch part to overcome data shortage. Model pre-training on our synthetic dataset was compared to similar inspection datasets in the literature. Two techniques are presented to increase model training efficiency and prediction coverage in darker areas of the image. Results were collected over three popular segmentation architectures to confirm superior effectiveness of synthetic data and unveil various challenges of multi-view inspection.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"139 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于金属表面反射光线复杂且缺乏训练数据,金属缺陷分割对自动检测系统提出了很大的挑战。为了克服金属离合器零件多视点检测数据不足的问题,提出了一种真实和合成的缺陷分割数据对。在我们的合成数据集上的模型预训练与文献中类似的检验数据集进行了比较。提出了两种提高模型训练效率和图像暗区预测覆盖率的技术。结果收集了三种流行的分割架构,以确认合成数据的卓越有效性,并揭示了多视图检查的各种挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Data for Defect Segmentation on Complex Metal Surfaces
Metal defect segmentation poses a great challenge for automated inspection systems due to the complex light reflection from the surface and lack of training data. In this work we introduce a real and synthetic defect segmentation dataset pair for multi-view inspection of a metal clutch part to overcome data shortage. Model pre-training on our synthetic dataset was compared to similar inspection datasets in the literature. Two techniques are presented to increase model training efficiency and prediction coverage in darker areas of the image. Results were collected over three popular segmentation architectures to confirm superior effectiveness of synthetic data and unveil various challenges of multi-view inspection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信