FlexFlow:一个用于卷积神经网络的灵活数据流加速器架构

Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, Xiaowei Li
{"title":"FlexFlow:一个用于卷积神经网络的灵活数据流加速器架构","authors":"Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, Xiaowei Li","doi":"10.1109/HPCA.2017.29","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) are verycomputation-intensive. Recently, a lot of CNN accelerators based on the CNN intrinsic parallelism are proposed. However, we observed that there is a big mismatch between the parallel types supported by computing engine and the dominant parallel types of CNN workloads. This mismatch seriously degrades resource utilization of existing accelerators. In this paper, we propose aflexible dataflow architecture (FlexFlow) that can leverage the complementary effects among feature map, neuron, and synapse parallelism to mitigate the mismatch. We evaluated our design with six typical practical workloads, it acquires 2-10x performance speedup and 2.5-10x power efficiency improvement compared with three state-of-the-art accelerator architectures. Meanwhile, FlexFlow is highly scalable with growing computing engine scale.","PeriodicalId":118950,"journal":{"name":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"256","resultStr":"{\"title\":\"FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural Networks\",\"authors\":\"Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, Xiaowei Li\",\"doi\":\"10.1109/HPCA.2017.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNN) are verycomputation-intensive. Recently, a lot of CNN accelerators based on the CNN intrinsic parallelism are proposed. However, we observed that there is a big mismatch between the parallel types supported by computing engine and the dominant parallel types of CNN workloads. This mismatch seriously degrades resource utilization of existing accelerators. In this paper, we propose aflexible dataflow architecture (FlexFlow) that can leverage the complementary effects among feature map, neuron, and synapse parallelism to mitigate the mismatch. We evaluated our design with six typical practical workloads, it acquires 2-10x performance speedup and 2.5-10x power efficiency improvement compared with three state-of-the-art accelerator architectures. Meanwhile, FlexFlow is highly scalable with growing computing engine scale.\",\"PeriodicalId\":118950,\"journal\":{\"name\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"256\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2017.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2017.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 256

摘要

卷积神经网络(CNN)是非常密集的计算。近年来,人们提出了许多基于CNN内在并行性的CNN加速器。然而,我们观察到计算引擎支持的并行类型与CNN工作负载的主要并行类型之间存在很大的不匹配。这种不匹配严重降低了现有加速器的资源利用率。在本文中,我们提出了灵活的数据流架构(FlexFlow),它可以利用特征映射、神经元和突触并行性之间的互补效应来缓解不匹配。我们用六种典型的实际工作负载评估了我们的设计,与三种最先进的加速器架构相比,它获得了2-10倍的性能加速和2.5-10倍的功率效率改进。同时,随着计算引擎规模的增长,FlexFlow具有高度可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural Networks
Convolutional Neural Networks (CNN) are verycomputation-intensive. Recently, a lot of CNN accelerators based on the CNN intrinsic parallelism are proposed. However, we observed that there is a big mismatch between the parallel types supported by computing engine and the dominant parallel types of CNN workloads. This mismatch seriously degrades resource utilization of existing accelerators. In this paper, we propose aflexible dataflow architecture (FlexFlow) that can leverage the complementary effects among feature map, neuron, and synapse parallelism to mitigate the mismatch. We evaluated our design with six typical practical workloads, it acquires 2-10x performance speedup and 2.5-10x power efficiency improvement compared with three state-of-the-art accelerator architectures. Meanwhile, FlexFlow is highly scalable with growing computing engine scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信