基于改进强度Pareto进化算法的多目标物化视图选择

J. Prakash, T. Kumar
{"title":"基于改进强度Pareto进化算法的多目标物化视图选择","authors":"J. Prakash, T. Kumar","doi":"10.4018/ijaiml.2019070101","DOIUrl":null,"url":null,"abstract":"A data warehouse system uses materialized views extensively in order to speedily tackle analytical queries. Considering that all possible views cannot be materialized due to maintenance cost and storage constraints, the selection of an appropriate set of views to materialize that achieve an optimal trade-off among query response time, maintenance cost, and the storage constraint becomes an essential necessity. The selection of such an appropriate set of views for materialization is referred to as the materialized views selection problem, which is an NP-Complete problem. In the last two decades, several new selection approaches, based on heuristics, have been proposed. Most of these have used a single objective or weighted sum approach to address the various constraints. In this article, an attempt has been made to address the bi-objective materialized view selection problem, where the objective is to minimize the view evaluation cost of materialized views and the view evaluation cost of the non-materialized views, using the Improved Strength Pareto Evolutionary Algorithm. The experimental results show that the proposed multi-objective view selection algorithm is able to select the Top-K views that achieves a reasonable trade-off between the two objectives. Materializing these selected views would reduce the query response times for analytical queries and thereby facilitates the decision-making process.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-Objective Materialized View Selection Using Improved Strength Pareto Evolutionary Algorithm\",\"authors\":\"J. Prakash, T. Kumar\",\"doi\":\"10.4018/ijaiml.2019070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data warehouse system uses materialized views extensively in order to speedily tackle analytical queries. Considering that all possible views cannot be materialized due to maintenance cost and storage constraints, the selection of an appropriate set of views to materialize that achieve an optimal trade-off among query response time, maintenance cost, and the storage constraint becomes an essential necessity. The selection of such an appropriate set of views for materialization is referred to as the materialized views selection problem, which is an NP-Complete problem. In the last two decades, several new selection approaches, based on heuristics, have been proposed. Most of these have used a single objective or weighted sum approach to address the various constraints. In this article, an attempt has been made to address the bi-objective materialized view selection problem, where the objective is to minimize the view evaluation cost of materialized views and the view evaluation cost of the non-materialized views, using the Improved Strength Pareto Evolutionary Algorithm. The experimental results show that the proposed multi-objective view selection algorithm is able to select the Top-K views that achieves a reasonable trade-off between the two objectives. Materializing these selected views would reduce the query response times for analytical queries and thereby facilitates the decision-making process.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.2019070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2019070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数据仓库系统广泛使用物化视图,以便快速处理分析查询。考虑到由于维护成本和存储约束而不能实现所有可能的视图,因此选择一组适当的视图来实现查询响应时间、维护成本和存储约束之间的最佳权衡就变得非常必要。选择这样一组合适的视图来实现被称为物化视图选择问题,这是一个np完全问题。在过去的二十年中,已经提出了几种基于启发式的新的选择方法。其中大多数都使用单一目标或加权和方法来解决各种约束。本文尝试使用改进强度帕累托进化算法来解决双目标物化视图选择问题,其目标是最小化物化视图的视图评估成本和非物化视图的视图评估成本。实验结果表明,提出的多目标视图选择算法能够在两个目标之间实现合理的权衡,选择Top-K视图。具体化这些选定的视图将减少分析查询的查询响应时间,从而促进决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Materialized View Selection Using Improved Strength Pareto Evolutionary Algorithm
A data warehouse system uses materialized views extensively in order to speedily tackle analytical queries. Considering that all possible views cannot be materialized due to maintenance cost and storage constraints, the selection of an appropriate set of views to materialize that achieve an optimal trade-off among query response time, maintenance cost, and the storage constraint becomes an essential necessity. The selection of such an appropriate set of views for materialization is referred to as the materialized views selection problem, which is an NP-Complete problem. In the last two decades, several new selection approaches, based on heuristics, have been proposed. Most of these have used a single objective or weighted sum approach to address the various constraints. In this article, an attempt has been made to address the bi-objective materialized view selection problem, where the objective is to minimize the view evaluation cost of materialized views and the view evaluation cost of the non-materialized views, using the Improved Strength Pareto Evolutionary Algorithm. The experimental results show that the proposed multi-objective view selection algorithm is able to select the Top-K views that achieves a reasonable trade-off between the two objectives. Materializing these selected views would reduce the query response times for analytical queries and thereby facilitates the decision-making process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信