脑磁共振成像中模糊聚类的仿真研究

M. E. Brandt, Y.F. Kharas
{"title":"脑磁共振成像中模糊聚类的仿真研究","authors":"M. E. Brandt, Y.F. Kharas","doi":"10.1109/IFIS.1993.324188","DOIUrl":null,"url":null,"abstract":"An important problem in segmentation of brain magnetic resonance images (MRI) is partial volume averaging of different types of tissue. This manifests itself as an overlap of tissue groups in the image histogram space. Fuzzy clustering is an effective technique for separating groups having vague boundaries. The fuzzy C-means (FCM) algorithm has been used for this purpose yet its effectiveness in discerning group differences on the order of a few percent in MRIs is not known. In this report, we compare the effectiveness of the hard C-means, several variants of FCM, and three versions of a possibilistic clustering approach in separating three simulated clusters as boundary overlap is increased.<<ETX>>","PeriodicalId":408138,"journal":{"name":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simulation studies of fuzzy clustering in the context of brain magnetic resonance imaging\",\"authors\":\"M. E. Brandt, Y.F. Kharas\",\"doi\":\"10.1109/IFIS.1993.324188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in segmentation of brain magnetic resonance images (MRI) is partial volume averaging of different types of tissue. This manifests itself as an overlap of tissue groups in the image histogram space. Fuzzy clustering is an effective technique for separating groups having vague boundaries. The fuzzy C-means (FCM) algorithm has been used for this purpose yet its effectiveness in discerning group differences on the order of a few percent in MRIs is not known. In this report, we compare the effectiveness of the hard C-means, several variants of FCM, and three versions of a possibilistic clustering approach in separating three simulated clusters as boundary overlap is increased.<<ETX>>\",\"PeriodicalId\":408138,\"journal\":{\"name\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFIS.1993.324188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFIS.1993.324188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

脑磁共振图像分割的一个重要问题是不同类型组织的部分体积平均。这表现为图像直方图空间中组织组的重叠。模糊聚类是分离具有模糊边界的群的有效方法。模糊c均值(FCM)算法已被用于此目的,但其在核磁共振成像中识别几个百分点的组差异的有效性尚不清楚。在本报告中,我们比较了硬c均值、FCM的几种变体以及可能性聚类方法的三种版本在边界重叠增加时分离三个模拟聚类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation studies of fuzzy clustering in the context of brain magnetic resonance imaging
An important problem in segmentation of brain magnetic resonance images (MRI) is partial volume averaging of different types of tissue. This manifests itself as an overlap of tissue groups in the image histogram space. Fuzzy clustering is an effective technique for separating groups having vague boundaries. The fuzzy C-means (FCM) algorithm has been used for this purpose yet its effectiveness in discerning group differences on the order of a few percent in MRIs is not known. In this report, we compare the effectiveness of the hard C-means, several variants of FCM, and three versions of a possibilistic clustering approach in separating three simulated clusters as boundary overlap is increased.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信