基于深度网络语言模型的噪声文本识别精度提高系统

R. Rohit, SA Gandheesh, KS Suriya, Peeta Basa Pati
{"title":"基于深度网络语言模型的噪声文本识别精度提高系统","authors":"R. Rohit, SA Gandheesh, KS Suriya, Peeta Basa Pati","doi":"10.1109/I2CT57861.2023.10126194","DOIUrl":null,"url":null,"abstract":"Text from image documents must be recognized for its usage. Various tasks such as plagiarism & error check, language analysis, information capture rely on the accuracy of this text conversion. OCR systems convert the document images to their text equivalent. These OCR systems are prone to introducing errors during the recognition process.This work reports a system developed to ingest image documents which is converted to text using available OCR technologies. The recognized text, subsequently, is processed with deep network language models to enhance the accuracy of text. The system consists of a client server architecture with user interface available from web application as well as from mobile app. For the language models, encoder-decoder based BART & MarianMT are used. The results obtained demonstrate a 35% reduction in WER using the BART language model.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System for Enhancing Accuracy of Noisy Text using Deep Network Language Models\",\"authors\":\"R. Rohit, SA Gandheesh, KS Suriya, Peeta Basa Pati\",\"doi\":\"10.1109/I2CT57861.2023.10126194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text from image documents must be recognized for its usage. Various tasks such as plagiarism & error check, language analysis, information capture rely on the accuracy of this text conversion. OCR systems convert the document images to their text equivalent. These OCR systems are prone to introducing errors during the recognition process.This work reports a system developed to ingest image documents which is converted to text using available OCR technologies. The recognized text, subsequently, is processed with deep network language models to enhance the accuracy of text. The system consists of a client server architecture with user interface available from web application as well as from mobile app. For the language models, encoder-decoder based BART & MarianMT are used. The results obtained demonstrate a 35% reduction in WER using the BART language model.\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

必须识别图像文档中的文本的用法。各种任务,如抄袭和错误检查,语言分析,信息捕获依赖于这种文本转换的准确性。OCR系统将文档图像转换为相应的文本。这些OCR系统在识别过程中容易引入错误。这项工作报告了一个系统开发摄取图像文档,并使用可用的OCR技术将其转换为文本。随后,对识别出来的文本进行深度网络语言模型处理,以提高文本的准确率。该系统由客户端服务器架构组成,用户界面可从web应用程序和移动应用程序中获得。对于语言模型,使用基于BART和MarianMT的编码器-解码器。所获得的结果表明,使用BART语言模型,WER降低了35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System for Enhancing Accuracy of Noisy Text using Deep Network Language Models
Text from image documents must be recognized for its usage. Various tasks such as plagiarism & error check, language analysis, information capture rely on the accuracy of this text conversion. OCR systems convert the document images to their text equivalent. These OCR systems are prone to introducing errors during the recognition process.This work reports a system developed to ingest image documents which is converted to text using available OCR technologies. The recognized text, subsequently, is processed with deep network language models to enhance the accuracy of text. The system consists of a client server architecture with user interface available from web application as well as from mobile app. For the language models, encoder-decoder based BART & MarianMT are used. The results obtained demonstrate a 35% reduction in WER using the BART language model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信