{"title":"组动作的拓扑结构","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.31","DOIUrl":null,"url":null,"abstract":"This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Topology of a Group Action\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.