组动作的拓扑结构

L. Tu
{"title":"组动作的拓扑结构","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.31","DOIUrl":null,"url":null,"abstract":"This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Topology of a Group Action\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍组动作的拓扑结构。证明了连续作用和光滑作用的不动点集和稳定器的一些拓扑事实。本章还介绍了等变管邻域定理和等变Mayer-Vietoris序列。流形M中子流形S的管状邻域是一个具有S上向量束结构的邻域。因为向量束的总空间与基空间具有相同的同伦类型,在计算上同伦时可以用管状邻域代替子流形。管状邻域定理保证了紧正则子流形的管状邻域的存在性。Mayer-Vietoris序列是计算两个开放子集的并集的上同调的有力工具。管状邻域定理和Mayer-Vietoris序列对于G流形具有等变对应项,其中G是紧李群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Topology of a Group Action
This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信